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Abstract Because of rapid forcing by varying cloud and sky conditions, turbulence time
series collected in the atmospheric surface layer over land may often be nonstationary. The
meteorological community, however, has no consensus definition of what nonstationarity is
and, thus, no consensus method for how to identify it. This study, therefore, adopts defini-
tions for first-order and second-order stationarity taken from the time series analysis literature
and implements new analysis techniques and probabilistic tests to quantify first-order and
second-order nonstationarity. First-order nonstationarity manifests as a change in the series
mean; second-order nonstationarity, as a change in the variance. The analysis identifies non-
stationarity in surface-level turbulent temperature and water vapour series collected during
two sample days with solar forcing influenced by cirrus and cirrostratus clouds, but that
nonstationarity is not as severe as expected despite the rapid thermal forcing by these clouds.
On the other hand, even with negligible cloud forcing, both sample days exhibited severe
nonstationarity at night.

Keywords Atmospheric surface layer · Cloud forcing · Integral scale · Nonstationarity ·
Time-dependent memory method (TDM method) · Time series analysis

E. L Andreas (B)
North West Research Associates, Inc. (Seattle Division), 25 Eagle Ridge, Lebanon, NH 03766-1900, USA
e-mail: eandreas@nwra.com

C. A. Geiger
Department of Geography, Center for Climatic Research, University of Delaware, Newark, DE, USA

G. Treviño
CHIRES, Inc., San Antonio, TX, USA

K. J. Claffey
U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, USA

123



38 E. L Andreas et al.

1 Introduction

The atmospheric boundary layer is inherently nonstationary. The sun rises and sets. Fair-
weather clouds pass overhead and periodically shade the surface. Thicker, more extensive,
cloud layers provide even more shading during daylight hours and act as a blanket against
radiative cooling at night. Moreover, the transition in sky conditions as these cloud layers
develop or dissipate affects the surface temperature just as do fair-weather clouds and sunrise
and sunset transitions.

The lower atmosphere responds almost immediately (order of tens of seconds) to this
rapid surface forcing because the forcing manifests first as a change in surface temperature.
The surface temperature, in turn, feeds into the sensible and latent heat fluxes, which affect
the near-surface atmospheric temperature and humidity profiles in short order. A change in
the sensible heat flux also alters the near-surface atmospheric stratification and, thus, quickly
influences the wind speed profile.

Monin–Obukhov similarity theory, which organizes our understanding of the atmospheric
boundary layer—especially the atmospheric surface layer—relies on two assumptions that
seem at odds with this depiction of the atmospheric boundary layer: (1) that the atmosphere
is statistically stationary, and (2) that the surface is horizontally homogeneous. In fact, in
some cases, the nonstationarity and the horizontal inhomogeneity go hand-in-hand, even
when the surface appears visually homogeneous. For example, anyone who has flown over
the U.S. Great Plains (or similar terrain on other continents) on a late-summer day featuring
fair-weather cumulus may have noticed the light and dark patches that the cloud shadows
create on the uniformly brown surface. Surface temperatures in the cloud shadows can be
5–10◦C lower than in full sunlight. Hence, a meteorological tower fixed on the surface would
experience the nonstationarity of the passing clouds and also the horizontal inhomogeneity
caused by the resulting spatial variability in surface temperature (cf. Roth and Oke 1995).

While Kukharets and Tsvang (1998) previously documented the variability in surface
temperature over visually homogeneous terrain, they made their measurements under clear
skies and inferred that fluctuations in the wind caused the temperature variability that was
observed. Roth and Oke (1995) hypothesized that broken clouds lead to spatial variability
in surface temperature but reported no observations to support this notion. Schumann et
al. (2002) studied the effects of cloud shadows on the structure of the convective bound-
ary layer with a radiative transfer model and large-eddy simulation. They did not study the
surface response to changes in cloud forcing but simply assumed that the surface responds
immediately. They offered no data to support this assumption or their model results.

Because clouds are ubiquitous, we speculate that many of the measurements of the
Monin–Obukhov similarity functions that have been reported were collected in nonstationary
conditions. Such violations of the premises on which Monin–Obukhov similarity rests may
explain some of the scatter that still exists in these “universal” similarity functions despite
almost 50 years of measurements to quantify them (e.g., Högström 1996; Andreas et al. 1998;
Johansson et al. 2001; Andreas 2002; Klipp and Mahrt 2004).

Still, the measured Monin–Obukhov similarity functions are not wildly scattered, just per-
plexingly scattered. Perhaps the need for stationary conditions is not a strong constraint on
Monin–Obukhov similarity theory. Our premise here, though, is that we know so little about
how to handle or even to judge nonstationarity that we cannot make progress in determining
its consequences without a better way to characterize it.

Foken and Wichura (1996), Vickers and Mahrt (1997), Mahrt (1998), and Andreas et al.
(2003), among others, have described methods for identifying nonstationarity in turbulence
series from the atmospheric boundary layer. But these authors alone describe at least five
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methods for identifying nonstationarity: for example, comparing statistics from short series
to statistics from longer series, computing trends, counting zero crossings, and using infor-
mation on the probability density function. That is, the community has reached no consensus
on how to identify nonstationary.

Here we present yet another method for identifying nonstationarity, but our method has
three advantages: it has a theoretical basis, it relies on accepted definitions of what consti-
tutes nonstationarity, and it assigns a probability as to whether any nonstationary period it
identifies is truly nonstationary.

Averaging a nonstationary time series is a fundamental problem because, by definition,
the resulting statistics depend on when you begin to average and how long you average.
We average using Treviño and Andreas’s (2000) time-dependent memory method (TDM
method), which was formulated especially to extract the mean and turbulent fluctuations
from a nonstationary series. We then invoke Priestley’s (1981) definitions of first-order and
second-order nonstationarity and use standard statistical functions to test for first-order and
second-order nonstationarity. These functions also let us assign significance levels to these
tests.

The data we use in these analyses come from a dedicated experiment during which we
deployed a suite of radiation instruments to characterize forcing by sun, sky, and clouds and
the surface’s response to this forcing. We combine these radiation measurements with tur-
bulence measurements to document the concomitant near-surface atmospheric response to
the radiative forcing. Our analysis reveals nonstationarity in the near-surface air temperature
and humidity associated with rapid changes in sky conditions. Andreas et al. (2006, 2007)
have reported some of our preliminary results.

2 Measurements

The data we use in our analysis come from a 2-week experiment conducted in a 15-acre field
in Lebanon, New Hampshire, in April 2005. The field had been mowed the previous autumn
and was, thus, covered in grass stubble and clippings a few tens of mm thick. When the
experiment began, the grass was dormant and the ground was cold, with the soil still frozen
a few tens of mm below a thawed surface layer. The grass greened up noticeably by the end
of the experiment, however, but was still short.

We used Eppley hemispherical, broadband longwave (model PIR) and shortwave (model
PSP) radiometers to measure incoming and outgoing longwave and shortwave radiation. We
also used Heitronics infrared thermometers to measure the sky (model KT 19.85II, wave-
length 9.6–11.5µm) and surface (model KT 19.81II, wavelength 8–10µm) temperatures.
These are narrow-beam radiometers, with a 2.5◦ field of view. Our last radiation instrument
was a Thermoscan model S60 digital infrared camera from FLIR Systems, operating in the
7.5–13µm wavelength band with 76,800 pixels in its field of view.

We sampled the Eppley radiometers and the Heitronics thermometers at 1 Hz and will
concentrate on this rapidly sampled data in our analysis. We obtained an image from the
infrared camera once a minute and averaged over its entire field of view to obtain the average
surface temperatures.

Later, we show temperatures obtained by converting the longwave radiation (QL) from
both the Eppley up-looking and down-looking instruments to a blackbody temperature using

TBB = (QL/σ)0.25 . (1)
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Fig. 1 Hourly eddy-correlation measurements of the sensible and latent heat fluxes, the flux of carbon dioxide,
and the friction velocity (u∗) for the duration of our experiment. Gaps were periods of rain that ruined the data
from the sonic anemometer/thermometer. Positive heat and CO2 fluxes are upward

This gives TBB in kelvins when QL is in W m−2, where σ (= 5.670400×10−8 W m−2K−4)

is the Stefan–Boltzmann constant. The Heitronics thermometers and the infrared camera also
measured the blackbody temperature because we set their adjustable emissivity values to one.

Near these radiation instruments, we had a “turbulence” tower with a three-axis, K-type
sonic anemometer/thermometer from Applied Technologies Inc. (Kaimal et al. 1990; Kaimal
and Gaynor 1991; Kaimal and Finnigan 1994, p. 218f.) mounted 3.6 m above the surface.
Placed just below the sonic (Kristensen et al. 1997) was a Li-Cor 7500 fast-responding water
vapour and carbon dioxide sensor. We sampled all of these instruments at 10 Hz, and later
show time series of these turbulence signals subsampled at 1 Hz simply for convenience. We
do use the 10-Hz data, though, for calculating statistics.

Finally, we documented sky conditions with periodic photographs from an all-sky camera
(Nikon Coolpix 4500 with a Nikon fisheye converter lens).

To place the analyses that we will describe in context, we show in Fig. 1 hourly averages
of the turbulent fluxes for the duration of our experiment. To obtain these fluxes, we did
standard turbulence processing. That is, we rotated the measured wind components into a
frame that was horizontal and aligned with the mean wind. We detrended each hourly time
series, if necessary, using the method described in Andreas and Treviño (1997). Lastly, we
applied the Webb correction (Webb et al. 1980; Fuehrer and Friehe 2002) to the water vapour
and carbon dioxide fluxes.

The friction velocity (u∗) plotted in Fig. 1 shows that wind speeds were typically moder-
ate during the day and low at night. Both the sensible and latent heat fluxes respond to this
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wind forcing and surface heating by the sun during the day. At night, the sensible heat flux
becomes downward, and the latent heat flux is near zero. Hence, during most afternoons, the
atmospheric surface layer was unstably stratified; at night, it was weakly stable.

The flux of carbon dioxide in Fig. 1 is the mirror image of the heat fluxes. Photosynthesis
produces a downwards carbon dioxide flux during daylight, and respiration by the plants and
micro-organisms in the soil produces a small net upward flux of carbon dioxide during the
night.

These CO2 fluxes are similar to those that others have measured by eddy correlation over
vegetative surfaces (e.g., Pattey et al. 2002; Gao et al. 2003; Jacobs et al. 2003; Siqueira et
al. 2003). If anything, the magnitudes of our fluxes may be somewhat smaller because our
experiment occurred early in the growing season (e.g., Jacobs et al. 2003). Our nighttime
fluxes, in particular, were generally smaller than those reported by Pattey et al. (2002), prob-
ably because nighttime temperatures—typically around 0◦C—were 15–20◦C lower than the
temperatures during their measurements.

3 Quantifying the Nonstationarity

One of the central issues in atmospheric turbulence research is deciding how long to average
a turbulence time series to obtain meaningful estimates of the mean, the variance, and the
turbulent fluxes (e.g., Lumley and Panofsky 1964, p. 35ff.; Wyngaard 1973; Sreenivasan
et al. 1978; Andreas 1988; Lenschow et al. 1994). Most attempts to answer this question
implicitly assume that the turbulence time series is stationary; but in light of the number of
time scales represented in the forcing (see Sect. 1), we believe that an analysis based on a
broader assumption that includes nonstationarity may be more realistic.

Turbulence analyses typically begin with an instantaneous measurement of some vari-
able x̃ (e.g., the longitudinal wind component). The purpose of averaging is to separate this
instantaneous value into mean (X) and turbulence (x) components such that

x̃ = X + x. (2)

When a series is nonstationary, however, the mean of x̃ may not be approximately constant
over typical hour-long averaging periods; X is thus ill-defined. The average amplitude of x

may also vary. We show both manifestations of nonstationarity in our later figures.
Treviño and Andreas (2000), however, developed a rational procedure to separate the

mean and the fluctuations, as required in (2), in a turbulence series that is assumed to be
nonstationary. The method applies equally well, though, to stationary series. Treviño and
Andreas call their technique the time-dependent memory method (TDM method; U.S. Patent
No. 6,442,506) because it finds two time scales for averaging. One scale, call it �T , defines
an averaging window over which to compute the mean (i.e., X) and, in turn, to separate
the turbulent part (i.e., x). Finding �T requires that we specify the measurement accuracy,
r , and invoke the constraint that we cannot know a property to better precision than our
measurement accuracy.

We later apply the TDM method to two of the measured turbulence variables: temperature
from the sonic thermometer and water vapour density from the Li-Cor 7500. As the accuracy
r for the temperature, we used 0.01◦C. As the accuracy for the water vapour density, we
used 1% of the daily average in water vapour density. Andreas and Treviño (1997) also used
sensor accuracy as a criterion for detrending a turbulence series.

A second time scale in the TDM method, the “memory,” L, derives as the decorrelation
time implied by the autocorrelation function of the turbulent part x. We obtain L as the
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integral of the autocorrelation function for x out to the lag that produces the maximum for
the integral (see Treviño and Andreas 2000). Treviño and Andreas (2000) then take 10L

as the averaging window over which to compute the variance, σ 2 = x2, where the overbar
indicates a time average. Using 10L as the window for computing σ 2 provides an adequate
number of independent samples. Usually, 10L is computed to be less than �T ; if it is not, we
set the averaging time for computing variance to �T . Treviño and Andreas (2006) elaborate
further on the advantages of an averaging scheme that uses distinct windows for finding X

and σ 2 compared to traditional block averaging.
Once we have used the time-dependent memory method to choose proper averaging times,

we can compute the mean and variance at regular intervals through that series and can test
whether the series is stationary or nonstationary. Priestley (1981, p. 104ff.) describes the
concept of a process that is stationary at order m. If a process is order-1 (first-order) station-
ary, its mean does not change with time. If a process is order-2 (second-order) stationary, its
variance does not change with time. Our testing for order-1 and order-2 stationarity is akin
to using the probability density function to test for stationarity (e.g., Kennel 1997).

Under the hypothesis that the mean is constant—that is, that a series is first-order station-
ary—the statistic

t = Xi − Xi+1
[

σ 2
i

ni+1
+ σ 2

i+1
ni

]1/2

[

ni + ni+1 − 2

ni + ni+1

]1/2

(3)

has a Student’s t distribution with zero mean, variance 1, and ni + ni+1 − 2 degrees of free-
dom. Here, Xi and Xi+1 and σ 2

i and σ 2
i+1 are the means and variances of adjacent intervals

in a turbulence time series, computed using the TDM method; and ni and ni+1 are the num-
ber of independent samples used to compute the variances. By computing t , we can test for
first-order nonstationarity.

If the x values derive from a normal distribution, the resulting sample variances can be
represented with a χ2 distribution; then, the statistic

F = niσ
2
i (ni+1 − 1)

ni+1σ
2
i+1 (ni − 1)

(4)

has an F distribution with ni − 1 and nn+1 − 1 degrees of freedom (e.g., Brunk 1965, p.
260). Because (4) involves only variances, we can test for second-order nonstationarity by
computing F for adjacent intervals.

We worry, though, that the F statistic is known to be sensitive to deviations from a normal
distribution (Wilks 2006, p. 165f.), and we might expect such deviations in a series that is
assumed a priori to be nonstationary. The TDM method, however, tends to identify locally
quasi-stationary segments in nonstationary series. Hence, we expect variances in (4), which
we compute using the TDM method, to be well enough behaved to make our calculations of
F meaningful.

The TDM method requires separating the instantaneous turbulence signal, x̃ (s), into mean,
X(s), and turbulence part, x(s), at every timestep s. We computed the memory L and the
variance σ 2, however, only at 30-s intervals. In other words, because nearby means and
variances are not necessarily independent, the means (Xi and Xi+1) and variances (σ 2

i
and σ 2

i+1) that we use for the comparisons in (3) and (4) are those separated by 30-s intervals
to ensure independence.

Briefly, we obtained this 30-s spacing by estimating a representative integral scale, �, for
our dataset. By integral scale here, we invoke Tennekes and Lumley’s (1972, p. 211) defini-
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tion that � is the time interval over which a signal is correlated with itself. As an estimate for
� in the neutrally stratified atmospheric surface layer, Wyngaard (1973) suggests � ∼ z/U ,
where z is the measurement height and U is the mean wind speed. Sreenivasan et al. (1978)
build on Wyngaard’s analysis and, from high-frequency time series of temperature, humidity,
and velocity components, deduce

� = 4z

U
. (5)

From (5), we estimate the typical integral scale in our data to be 3–7 s. That is, for our data,
z was 3.6 m for the sonic and about 3.2 m for the Li-Cor 7500. Wind speeds during our exper-
iment were generally 2–5 m s−1; therefore, � typically ranges from 3 to 7 s. Consequently,
we can be relatively confident that means and variances separated by 30 s are independent,
as required in (3) and (4).

The time-dependent memory method uses 10L as the averaging window for variance.
Therefore, each variance estimate in (3) and (4) derives from 10 independent samples since
L is approximately the instantaneous decorrelation time of the series. Hence, ni and ni+1

are both 10 in (3) and (4). Consequently, the t distribution in (3) has 18 degrees of freedom.
Then, if |t | is larger than 2.878, the series is first-order nonstationary at the 1% significance
level.

Also, because ni and ni+1 are the same, the F statistic in (4) reduces to σ 2
i /σ 2

i+1, and both
degrees of freedom for the F distribution are 9. Therefore, the 99% confidence interval for F

in (4) is [0.153, 6.54]. F values outside this interval indicate that a time series is second-order
nonstationary at the 1% significance level.

The Appendix presents examples of distributions for the averaging window �T and the
memory L that we computed using the TDM method during the course of our analysis.

4 Results

Here we consider just 2 days from the experiment to demonstrate the various types of rapid
forcing and to investigate nonstationarity.

Figure 2 shows time series from 26 April 2005 of incoming shortwave radiation, sky tem-
perature from the up-looking infrared thermometer, surface temperature inferred from the
down-looking Eppley longwave radiometer, and air temperature from the sonic thermometer.
On a clear day, the shortwave signal would be very smooth, with a peak near 1,000 W m−2

around noon (Andreas et al. 2006). On 26 April, though, thin cirrus before noon and cirrus
and cirrostratus after noon blocked the sun to varying degrees. The sky temperature reiterates
the presence and effects of these clouds. A warming sky indicates increasing clouds, while a
cooling sky signals dissipating clouds. Between midnight and 0400 h, in fact, the sky and sur-
face temperatures were nearly the same: clouds were so thick that the surface and the clouds
were nearly in radiative equilibrium. Realize, too, that the surface and sky temperatures in
Fig. 2 have different sensitivities to the clouds because we measured surface temperature
here with the hemispherical Eppley radiometer but sky temperature with the narrow-beam
Heitronics thermometer.

The forcing by these clouds and, especially, the change in forcing, is almost immediately
evident (within tens of seconds) in the surface temperature and in the air temperature in
Fig. 2. For example, under the thick clouds between midnight and 0400 h, the air temperature
shows very small turbulent fluctuations. But when these clouds begin clearing, the surface
temperature falls by about 5◦C, and the air temperature likewise decreases 1–2◦C. Moreover,
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Fig. 2 Time series for 26 April 2005 of incoming shortwave radiation, sky temperature from the up-look-
ing infrared thermometer, blackbody surface temperature from the down-looking Eppley radiometer, and air
temperature from the sonic thermometer. All of these traces are 1-Hz data. The lower two panels are t and F

statistics computed every 30 s from (3) and (4) from the raw 10-Hz temperature data; horizontal dashed lines
are 99% confidence limits

the air temperature shows large fluctuations, evidence of downward sensible heat transfer to
offset the radiative surface cooling.

During the day, one can follow ripples in the incoming shortwave radiation and sky temper-
ature in Fig. 2 through the surface temperature and the air temperature. The spiky shortwave
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trace implies that the cloud forcing can change quite rapidly; the surface and air temperatures
respond almost immediately to this forcing.

Just one example of this daytime forcing in Fig. 2 is the persistent cloud from about 1500
to 1700 h. As soon as evidence of the cloud appears in the shortwave and sky traces in the
figure, the surface temperature begins falling from a local maximum near 1500 h and falls
almost 15◦C while the cloud persists. The air temperature responds almost immediately,
falling about 4◦C, and the turbulent fluctuations decrease to nighttime levels.

The lower two panels in Fig. 2 show time series of the t and F statistics computed from the
10-Hz temperature data. We did not detrend these data. The t and F plots both contain 2,879
points. Since we are testing t and F at the 1% significance level, only about 29 points should
randomly fall outside the 99% confidence intervals in each plot if the temperature series were
both first-order and second-order stationary. But many more than 29 points exceed the 99%
confidence limits in both plots (137 in t , and 150 in F ). That is, our analysis finds evidence
of nonstationarity in the day-long temperature series.

An obvious feature of the t and F traces in Fig. 2 is that the first 8 h of the day show many
more excursions of t and F outside their respective 99% confidence limits than during the
rest of the day. These statistics thus confirm a well-known observation: conditions at night are
often nonstationary. But the t and F statistics also highlight periods of nonstationarity during
daylight hours that evidently result from cloud forcing. For example, the cloud between 1500
and 1700 h affected air temperature enough to produce clusters of excursions beyond the 99%
confidence limits in both t and F during this period.

Figure 3 shows several day-long time series from 22 April 2005. This day featured clear
skies from midnight until 0900 h, as evidenced by our up-looking infrared thermometer
(“Sky Temp.”) seeing sky temperatures lower than its minimum instrumental range. Thin
cirrus clouds, many from spreading contrails, then began forming. Next, thicker cirrostratus
developed at about 1530 h and intermittently blocked and revealed the sun until about 1800 h.
Finally, thicker clouds developed after sunset, as evidenced by the sky temperature.

Again, the forcing by clouds ripples quickly through the surface and air temperatures in
Fig. 3. The clearest example is for the sequence between 1530 and 1800 h, which was under
the influence of cirrostratus clouds with four main clearing episodes. These four clearing
events lasted only 10–15 min each (Fig. 4), yet the two surface temperatures and the air tem-
perature all reveal nearly instantaneous warming coincident with these thinning or clearing
events and significant cooling when the clouds encroach between them. The water vapour
trace also shows up-going spikes that correspond with these clearing events.

Figure 5 shows the t and F statistics every 30 s for the temperature and water vapour
signals depicted in Fig. 3. As with Fig. 2, we see in Fig. 5 many more excursions for t and
F outside their respective 99% confidence bands between midnight and 0800 h than later in
the day.

On this day, the F statistic, which quantifies changes in variance and, thus, second-order
nonstationarity, seems to be a better indicator of cloud forcing than the t statistic. For example,
the F statistic for both air temperature and water vapour density responds with excursions
outside the 99% confidence band when clouds encroach at about 1530 h. The corresponding
t statistic here, which quantifies a change in the mean and, thus, first-order nonstationarity,
increases a small amount in magnitude but remains within the 99% confidence band at the
start of the episode.

Lastly, we wish to look more closely at the midnight-to-0800-h period for 22 April and
demonstrate that the t and F statistics have implications for the dynamics that govern the non-
stationarity. Figures 6 and 7 combine the temperature and water vapour traces, respectively,
from Fig. 3 with the t and F statistics from Fig. 5 for midnight to 0800 h on 22 April. These
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Fig. 3 Time series for 22 April 2005 of incoming shortwave radiation, sky temperature from the up-looking
infrared thermometer, surface temperature measured by both the infrared camera and the down-looking infra-
red thermometer, air temperature measured by the sonic, and water vapour density measured by the Li-Cor
7500. All traces are 1-Hz data except the infrared camera, which sampled once a minute

expanded plots make it easier to demonstrate the behaviour in the time series of the physical
variable that produces a large response in t or F . For example, a high peak or deep valley in
the time series usually correlates with t or F excursions outside the 99% confidence bands.
Likewise, any quiet period in the turbulence that is followed by a relatively noisy period, or
vice versa, correlates with excursions in F . The deep, steep valley in air temperature (Fig. 6)
at about 0600 h, for instance, is an event that produces responses in both t and F . The rapid
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Fig. 4 As in Fig. 3, except this shows only 1400–1900 h on 22 April 2005 and focuses on the cloudy and
clearing events described in the text. The “IR Camera” trace in the middle panel suggests that the clock on the
infrared camera was running about 160 s fast

climb but decreasing variability in water vapour density (Fig. 7) for 0330 to 0430 h is another
event producing responses in both t and F .

Figures 8 and 9, respectively, show alternative presentations of these t and F statistics
for temperature and water vapour density. Here we take the same information as in Figs. 6
and 7 but show F versus t . These plots more clearly show how often the series are strictly
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Fig. 5 The t and F statistics every 30 s computed using (3) and (4) and the raw 10-Hz data for the air
temperature and water vapour series depicted in Fig. 3. The dashed lines are 99% confidence limits

stationary, first-order but not second-order nonstationary, second-order but not first-order
nonstationary, and both first-order and second-order nonstationary.

In the t and F scatter plot for air temperature (Fig. 8), 111 of 959 samples show first-order
nonstationarity. That is, these samples lie in sectors I–IV and b and d. Likewise, 179 of 959
samples show second-order nonstationarity. These samples lie in sectors I–IV and a and c.
Since we are testing for first-order and second-order nonstationarity at the 1% significance
level, we would expect only 10 t and 10 F values (i.e., 1% of 959 samples) to randomly fall
outside the central box in Fig. 8 if the data were truly stationary. We can therefore readily
conclude that the air temperature data for 0000 to 0800 h on 22 April were nonstationary at
either first order or second order.

A more restrictive test might be to identify the data as nonstationary only if they exhibit
first-order and second-order nonstationarity simultaneously. In other words, only samples
that fall in sectors I–IV would be indicators of a nonstationary series. Still, however, in
Fig. 8, 72 samples, 7.5% of the available data, fall in these sectors. Thus, even with this
narrower definition of nonstationarity, the temperature signal in Fig. 6 would still be judged
nonstationary.

Figure 8 also reveals information on the dynamics of the nonstationarity. Most of the
samples that display both first-order and second-order nonstationarity fall in sector IV. Here
t is negative, and F is greater than one. From our definitions of t and F [see (3) and (4)],
t is negative when the mean increases between adjacent samples, and F is greater than one
when the variance decreases between adjacent samples. Thus, for Fig. 8 at least, the pre-
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Fig. 6 Air temperature from midnight to 0800 h on 22 April 2005 and corresponding t and F statistics at 30-s
intervals. The dashed lines are 99% confidence limits

ferred regime that produces both first-order and second-order nonstationarity is for the mean
to increase while the variance simultaneously decreases.

Such behaviour is evidence of coherent structures, often seen as temperature ramps
(Antonia et al. 1979; Phong-anant et al. 1980; Kikuchi and Chiba 1985) in the atmospheric
surface layer. Antonia and Chambers (1978), Antonia et al. (1979); Antonia et al. (1982),
and Phong-anant et al. (1980) describe such ramps in the unstably stratified surface layer.
Kikuchi and Chiba (1985) and Revelle (1993) report ramps in the stably stratified surface
layer, which is the situation represented in Figs. 6–9. Furthermore, in our case, the ramps
seem to be evidence of coherent “sweeps” (e.g., Högström and Bergström 1996) that bring
relatively warm air from aloft down to the surface to offset the radiative losses.

While Figs. 6 and 8 suggest that the temperature signal for 0000 to 0800 h on 22 April
was nonstationary, our similar analysis shows that temperature is better behaved for 0800 h
through midnight. In Fig. 5, the t and F statistics for temperature make fewer excursions
outside their 99% confidence bands. During this period, only 2.3% of the t values and only
2.6% of the F values stray outside the 99% confidence bands. These extreme values, how-
ever, generally cluster and, thus, indicate isolated nonstationary events within a signal that
is basically stationary. In fact, in only 0.3% of the samples from 0800 h through midnight do
t and F simultaneously breach their respective 99% confidence limits. Based on this more
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Fig. 7 As in Fig. 6, but this plot is for water vapour density

restrictive definition of nonstationarity, we might conclude that the temperature trace for
0800–2400 h on 22 April in Fig. 3 represents stationary conditions despite the obvious rapid
forcing by the clouds.

Figure 9, the scatter plot of t and F for water vapour density for 0000–0800 h on 22 April,
contrasts with Fig. 8. Here, 13.6% of the t statistics fall outside the 99% confidence band:
that is, they fall in sectors I–IV and b and d. But only 6.3% of the F statistics fall outside
the 99% confidence band. Thus, as with Fig. 8, Fig. 9 shows ample evidence of first-order
and second-order nonstationarity. But only a little more than 1% of the samples (10 of 959)
in Fig. 9 exhibit first-order and second-order nonstationarity simultaneously. Consequently,
with this more restrictive definition of nonstationarity, we might conclude that the water
vapour trace in Fig. 7 is essentially stationary.

Moreover, no samples fall in sector IV, which was the most populated of the simulta-
neously nonstationary temperature cases in Fig. 8. No samples fall in sector I either, and only
one sample falls in sector II. Thus, in contrast to Fig. 8, 9 of the 10 cases for which t and F

are simultaneously outside their 99% confidence bands fall in sector III. Here, both the mean
and the variance increase significantly between adjacent samples.

For the other 16 h on 22 April, from 0800 to 2400 h (see Figs. 3 and 5), only 2.1% of the
t statistics and only 3.4% of the F statistics for the water vapour density are outside their
respective 99% confidence bands. Again, since these are 1% significance tests, we would still
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Fig. 8 The t and F statistics for the air temperature data in Fig. 6 are displayed as a scatter plot. Markers within
the central box are within both t and F 99% confidence bands and would indicate stationary data. Markers in
sectors a and c indicate first-order stationary but second-order nonstationary data. Markers in sectors b and d
indicate first-order nonstationary but second-order stationary data. Markers in sectors I–IV indicate data that
are both first-order and second-order nonstationary

Fig. 9 As in Fig. 8, but this shows the t and F statistics for water vapour density from Fig. 7. This plot would
have the same sectors delineated in Fig. 8, but we omit the dashed lines for less cluttered viewing. Markers in
the central box indicate strict stationarity

be concerned about nonstationarity in the water vapour signal. But, as with air temperature,
the excursions outside the 99% confidence bands for 0800–2400 h, especially for t , occur
in clusters. Furthermore, during this 16-h period, in only 0.3% of the total samples do the
extremes in t and F occur simultaneously.
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5 Conclusions

Our original hypothesis was that changes in cloud forcing immediately affect the surface
temperature and, thus, the temperature of the near-surface atmosphere and, perhaps, other
near-surface meteorological variables. Our two examples of day-long traces of the radiative
forcing and the responses in surface temperature and in near-surface air temperature and
humidity (Figs. 2–4) confirm this scenario. The surface temperature responds significantly
and typically within a minute to rapid changes in the incoming shortwave and longwave radi-
ation that are associated with changing cloud conditions. The near-surface air temperature
quickly follows suit because it is closely coupled to the surface through the sensible heat flux.
We also see cases when the near-surface water vapour density also responds to this cloud
forcing, presumably through changes in the latent heat flux from the surface or because of
changes in boundary-layer mixing.

The second part of our hypothesis was that changes in cloud forcing lead to nonstationarity
in the turbulence properties of the near-surface atmosphere. To evaluate this hypothesis, we
first introduced a rigorous definition of nonstationarity. First-order nonstationarity occurs
when adjacent means in a time series fail a two-tail t test for equality at the 1% significance
level. Second-order nonstationarity occurs when adjacent variances fail a two-tail F test for
equality at the 1% significance level. While failing either of these tests is evidence that a time
series is nonstationary, an even more restrictive definition of nonstationarity is that a time
series must fail both tests before it is identified as nonstationary.

We looked for nonstationarity associated with cloud forcing in the air temperature and the
water vapour density by introducing new analysis techniques. We first used the time-depen-
dent memory method (Treviño and Andreas 2000) to separate mean and fluctuating parts
of the air temperature and water vapour signals and to compute corresponding variances.
The TDM method is designed specifically to extract means and variances from a signal that
is presumed to be nonstationary. With the means and variances from the TDM method, we
computed several day-long series of t and F statistics with 30-s spacing. To our knowledge,
this is the first time that t and F statistics have been applied to the problem of identifying
first-order and second-order nonstationarity.

Testing at the 1% significance level, we found in both our examples that the midnight-
to-sunrise temperature and water vapour signals were severely nonstationary. Micrometeo-
rologists have known for a long time that nighttime conditions are often nonstationary; our
statistics confirm this fact and allow us to assign a probability as to whether a period is
stationary or not.

The daylight and early-night data, however, are less conspicuously nonstationary accord-
ing to our t and F tests, despite examples selected with frequent changes in cloud forcing.
We see short clusters of nonstationarity associated with the most extreme changes in cloud
forcing. But the rapid, small changes in incoming shortwave radiation in Figs. 3 and 4 that
we associated with varying cirrus clouds do not produce severe nonstationarity.

Perhaps Monin–Obukhov similarity functions measured during the day under conditions
of variable cloudiness have not been seriously degraded by nonstationarity. On the other
hand, our analysis suggests that any similarity functions measured at night over terrestrial
surfaces experiencing diurnal forcing likely suffer severely from nonstationarity. Nonstation-
arity may thus explain the wide range in Monin–Obukhov similarity functions obtained in
stable stratification (e.g., Andreas 2002).

Although here we applied our analysis techniques only to time series, they would work as
well for identifying inhomogeneity in spatial series: in data from aircraft turbulence instru-
ments, for example.
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Fig. 10 Cumulative probability density functions for the averaging time �T computed for the temperature
and water vapour density data collected on 22 April 2005. The three periods identified have different �T

distributions
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Appendix A: The Averaging Times �T and L

To emphasize how the time-dependent memory method differs from standard turbulence
averaging, we show here some examples of probability density functions (PDFs) for the two
averaging times that the TDM method evaluates. We denote as �T the time required to find
the mean and as L, referred to as the “memory,” the averaging period for finding the variance
(or spectrum). Treviño and Andreas (2000) explain how the TDM method finds these times.
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Fig. 11 Probability density functions for the memory, L, computed for the temperature and water vapour
density data from 22 April 2005. As in Fig. 10, the panels show PDFs for three different periods on this day

The majority of the analysis that we reported here concentrated on the temperature and
water vapour signals for 22 April 2005 (i.e., Figs. 3–9). Figures 10 and 11 show �T and
memory values obtained for this day for the same times for which we computed the t and F

statistics in Fig. 5.
Figure 10 shows the cumulative probability density functions for �T for temperature and

water vapour for three periods on 22 April. In our analysis, �T was not allowed to be less
than 30 s because of the integral scale constraint discussed in Sect. 3. Therefore, all curves
in Fig. 10 start at 30 s. A high percentage of our calculations yielded acceptable means with
only 30 s of averaging, especially for the water vapour data.

At the other extreme, we did not let �T exceed 900 s (i.e., 15 min). A few of our calcula-
tions reached this limit without meeting the accuracy constraint that ultimately defines �T ,
as described by Treviño and Andreas (2000). For these few samples, we would say that the
TDM method did not converge; but we continued our analysis anyway by using �T = 900 s
for the sake of having continuous time series of means and variances. In short, the cumulative
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PDFs in Fig. 10 do not reach 1.0 at the right edge of the plots because of these values of
�T = 900 s and a few other unusually large �T s that were less than 900 s but greater than
the right limits on the horizontal axes in Fig. 10.

Because our discussion in Sect. 4 identified differences in the turbulence signals between
the periods midnight to 0800 h and 0800 h to midnight, Fig. 10 shows the cumulative PDFs for
these two periods and for the whole day. In each panel in the figure, the trace for the whole
day falls between the traces for the early period and for the later period. But the relative
positions of the early and later periods switch between the two panels in Fig. 10. That is, for
the temperature data, the midnight to 0800 h trace reflects larger �T values and thus rises
slower than the 0800 h to midnight trace. In the water vapour panel in Fig. 10, the opposite
is true. Over 90% of the �T values for the midnight to 0800 h period were 30 s, while the
0800 h to midnight period features larger �T values.

In summary, from Fig. 10 we conclude that, on this day, 500 s of averaging was suffi-
cient to obtain a meaningful mean for temperature over 90% of the time. Meanwhile, 70 s of
averaging was sufficient to evaluate the mean for water vapour density over 90% of the time.

Because we often computed the memory, L, to be less than a second and because, in
essence, the memory is the same as the integral scale � that we discussed in Sect. 3, we
show in Fig. 11 the probability density functions (as opposed to the cumulative PDFs) for
the memory for temperature and water vapour on 22 April. Again, Fig. 11 identifies the same
three periods as in Fig. 10.

In both panels in Fig. 11, the majority of memory values are smaller than 10 s, and the
PDFs peak near 3–6 s for temperature and near 2–4 s for water vapour. These plots therefore
corroborate the estimate for the integral scale, �, that we made in Sect. 3 and, in turn, support
our decision to calculate t and F statistics every 30 s.
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