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Abstract. We formulate a method for determining the smallest time interval1T over which a turbu-
lence time series can be averaged to decompose it into instantaneousmeanandrandomcomponents.
From therandompart the method defines the optimal interval (or averaging window) AW over which
this part should be averaged to obtain the instantaneous spectrum. Both1T and AW vary randomly
with time and depend on physical properties of the turbulence.1T also depends on the accuracy of
the measurements and is thus independent of AW. Interesting features of the method are its real-time
capability and the non-equality between AW and1T .
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1. Introduction

The atmospheric boundary layer (ABL) is by nature nonstationary at all time
scales. Another name for nonstationarity isintermittency, but, for the ABL, in-
termittency generally refers to short-term events. A key to understanding ABL
intermittency is the ability to say something meaningful about the turbulence
during such events.

Many researchers have reported results of investigations into requisite averaging
intervals for estimating turbulence statistics (e.g., Bradshaw, 1971; Lumley and
Panofsky, 1964, p. 36ff.; Gupta et al., 1971; Wyngaard, 1973; Blackwelder and
Kaplan, 1976; Wyngaard and Clifford, 1978; Sreenivasan et al., 1978; Andreas,
1988; Kaimal et al., 1989; Lenschow et al., 1994; Gluhovsky and Agee, 1994;
Gupta, 1996). None, however, has adequately considered the intervals necessary to
determine turbulence statistics within intermittent ABL events.

Here we extend the idea of minimum averaging to its lowest limit, one that
approaches the duration of intermittent events – tens of seconds. Keep in mind that
spectral analysis of the ABL requires quantifying not only the instantaneous spec-
trum8 but also changes in it from one intermittent event to the next. Such changes
typically appear in frequency content, distribution, domain, and bandwidth.

To accomplish this, we formulate a method for identifying the smallest interval
1T over which an ABL time series can be averaged to define its instantaneous
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meanand accompanyingdeviationsfrom the mean. In some circles,meanis re-
ferred to as thesystematicpart anddeviationsare called therandom part (see
Bendat and Piersol, 1971). From therandompart, the method determines the op-
timal interval (or window) AW over which this part should be averaged to estimate
8.

The interesting feature of these determinations is not only that AW and1T are
determined in real time and depend on instantaneous properties of the ABL, but
also that AW does not always equal1T . The difference between AW and1T is
due to dynamical effects and not to kinematical scale changes. That is, it is not
possible to re-scale the turbulence to make AW and1T equal to one another. This
difference is consistent with the fact thatmeanandrandomcomponents represent
different degrees of freedom. In determining8 we treat themeanas an instantan-
eous DC component; from8 emerges all the parameters necessary to assess the
instantaneous character of ABL turbulence.

The method localizes8 by assigning uniform weight to therandompart of
the time series within AW and zero weight to anything outside. The location of
AW in time is designated byt , the presenttime. The length of AW is propor-
tional to at-dependent parameter called thememory. As t advances, the memory
changes; and, thus, the magnitude of AW varies. This has the effect of varying
the ‘block length’ of data used in computing8 (cf. Henjes, 1997). The magnitude
and variability of the block length here, though, are defined by therandompart
of the ABL time series rather than by the analyst. In this way, the method adapts
to instantaneous ABL properties and reduces the likelihood that short-lived events
are lost or masked due to user-defined averaging intervals that are too short or too
long.

Its real-time capability makes our method more versatile than existing al-
gorithms, such as thesliding FFT (Fast Fourier Transform) andvariable interval
time averaging(VITA) (Gupta et al., 1971; Blackwelder and Kaplan, 1976; Gupta,
1996). Real-time capability insliding FFT and VITA is unachievable because (i)
both use information from future ABL behaviour to determine present frequency
information; and (ii) both require interactive user input, which cannot reliably
emulate the changing properties of the ABL. Information from the future is used
whenever an algorithm determines ABL behaviour at timet by using information
at time t + T , T > 0, and all intervening times. The method formulated here
uses only information from the present and not-too-distant past to define8; no
information from the future is required. The method formulated here requires no
interactive user input. Lastly,slidingFFT and VITA, in contrast to our method, use
the same averaging interval formeanandrandomcomponents of the turbulence.

For an optimal AW, the resulting8 depends ont but not on AW. That is, in
spite of inherent variability, AW is defined in such a way that8 is strictly8(t, ω),
not8(t, ω, AW), whereω is radian frequency. Ast advances, and successive sets
of 1T , AW, and8 are identified,8(t, ω) estimates the instantaneous spectrum of
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the ABL. We demonstrate our method by applying it to wind speed data collected
in the ABL.

2. Formulation

2.1. SEPARATING MEAN AND RANDOMPARTS

Consider the time seriesS(Z, γ ), which is sampled for the period[t−T , t], wheret
is thepresenttime andT > 0 can be on the order of hours.γ is the ‘running time’,
andS(Z, γ ) is sampled fast enough to contain inertial subrange information.Z

is the height above the ground where the measurements were made and, for our
analysis, is disposable.
S(γ ) is first averaged according to

1

1T

∫ t

t−1T
S(γ )dγ = S̄(t,1T ), (1)

where1T < T . Note the present time is the upper limit of this integration, and
only information from the present and earlier are used. No information forward of
t (i.e., the future) is invoked, making (1) areal-timeaverage.

The intent is to determine how far back in time, defined by1T > 0, to begin
the integration in (1) such that̄S(t,1T ) estimates the ABLmeanat time t . Al-
though here we implement (1) in an off-line fashion, (1) can be hardwired into a
signal processor to generate information that is as near real-time as possible for
the particular processor. The requisite1T is itself t dependent; and for (1) to be a
reliable measure of a local average,1T must be on the order of magnitude of the
related time scale of the ABL. Once that1T is matched, though,̄S(t,1T ) loses
its1T dependence and becomes simplyS̄(t).

If the expected value ofS(γ ) is 〈S(γ )〉 = µ(γ ) andµ(γ )≈ constant, sayµ(t),
over [t − 1T, t], µ(t) is then a valid estimate of〈S̄(t,1T )〉. For the ABL, the
requisite constancy ofµ(γ ) can be enforced by removing any trend that may exist
in S(γ ) over1T (cf. Treviño, 1985).

Using (1), we form the sequence of valuesS̄(γ ,1T ) for γ in the domain
t − 1T ≤ γ ≤ t . This requires values ofS(γ ) as far back as 21T = H (H
for ‘history’). For example, if1T is 5 s, the sequence ofS̄(γ ,1T ) values formed
in this way contains 5 s worth of 5 s averages, i.e., 10 s total of past and present
information. The motivation for forming the sequenceS̄(γ ,1T ) in this way is to
identify therandompart ofS(γ ) also overt − 1T ≤ γ ≤ t . The procedure for
doing this is defined in the following paragraph. In this way, bothS̄(γ ,1T ) and
therandompart ofS(γ ) can be identified over the same time scale(1T ).

From the sequencēS(γ,1T ), we form the time series

x(γ,1T ) = S(γ )− S̄(γ ,1T ). (2)
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Table I illustrates this procedure for a present time of 09:46 local time and averages
of 1 s. Column 1 is actual time beginning at 09:45:57; column 2 is actual wind
speed data recorded at 10 Hz; column 3 is the 1 s averages (10 data points) of the
data in column 2, beginning at 09:46 (the present) and running backwards until
09:45:59.1. That is, all the elements in column 3 are averages defined as in (1) for
the succession of ‘present’ times 09:45:59.1, 09:45:59.2, 09:45:59.3,. . . , 09:46:00.
The quantity in column 3 corresponding to 09:45:59.1 is the average of the ten
quantities in Column 2 from 09:45:59.1 back to 09:45:58.2.

Column 4 is the difference between column 2 and column 3. If 1 s was indeed
the window that ‘matches’ the related time scale of the data, Column 3 would
then be the time-dependentmeanof the data for the succession of ‘present’ times
09:45:59.1, 09:45:59.2, 09:45:59.3, . . . , 09:46:00, and column 4 would be the cor-
responding time-dependentrandompart. An alternate designation for the totality
of information in Column 4 isχ(γ ), t − 1T ≤ γ ≤ t . This notation will be used
hereafter.

Next, evaluate the quantity

m.s.e.=
{

1

1T

∫ t

t−1T
χ(γ )dγ

}2

=
{(

1

1T

)2 ∫ t

t−1T

∫ t

t−1T
χ(γ1)χ(γ2)dγ1dγ2

}
= χ̄2(t,1T ) (3)

for a specifiedt (e.g., 09:46) and values of1T beginning, say, with1T in (1)
initially the inverse of the sampling rate (SR) and then increasing by successive
doubling. Thus, if SR is 10 Hz, the first1T is 0.1 s, and successive values are
0.2 s, 0.4 s, 0.8 s, . . . . Care must be taken, though, to ensure thatH does not
exceedT . If it does, select a latert and begin again.

In (3), m.s.e. designates themean-square error(see Papoulis, 1965, p. 323, et
seq.), andχ(γ ) is a time series whose average is not identically zero, either in
the time-average sense (over the requisite1T ) or in the ensemble-average sense –
cf., Column 4, Table I. Both averages, however, are ‘small’, with the definition of
‘small’ to be given shortly.

With the transformation of coordinatesγ = (γ1 + γ2)/2 andτ = γ2 − γ1, the
double integral within { } in (3) becomes

m.s.e.= 1

1T

∫ 1T

−1T

((
1

1T − |τ |
)∫ t−|τ |/2

t−1T+|τ |/2
χ
(
γ − τ

2

)
χ
(
γ + τ

2

)
dγ

)
dτ,

(4)

where both the scale factor(1T − |τ |)−1 and the limits of the integration inγ are
adjusted to accommodate the fact that only a finite amount of data are available
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TABLE I

Example of obtaining therandompart of a series of turbulence
data using (1) and (2). Here1T = 1 s.

Actual time Measured data First average Random part

[γ ] [S(γ )] [S̄(γ ,1T )] [χ(γ )]
09:45:57.0 1.79

09:45:57.1 1.78

09:45:57.2 1.76

09:45:57.3 1.71

09:45:57.4 1.63

09:45:57.5 1.55

09:45:57.6 1.44

09:45:57.7 1.52

09:45:57.8 1.42

09:45:57.9 1.53

09:45:58.0 1.58

09:45:58.1 1.59

09:45:58.2 1.48

09:45:58.3 1.60

09:45:58.4 1.66

09:45:58.5 1.66

09:45:58.6 1.68

09:45:58.7 1.74

09:45:58.8 1.70

09:45:58.9 1.84

09:45:59.0 1.82

09:45:59.1 1.77 1.70 0.07

09:45:59.2 1.72 1.72 0.00

09:45:59.3 1.65 1.72 −0.07

09:45:59.4 1.65 1.72 −0.07

09:45:59.5 1.78 1.74 0.04

09:45:59.6 1.71 1.74 −0.03

09:45:59.7 1.65 1.73 −0.08

09:45:59.8 1.64 1.72 −0.08

09:45:59.9 1.74 1.71 0.03

09:46:00.0 1.86 1.72 0.14
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the computation. The expression within the outer ( ) is the autocorrelation. The
τ -dependence of the scale factor can be eliminated if1T is considerably larger
than the largest value ofτ for which the autocorrelation is non-zero; that is, if1T
is large enough that(1T − |τ |)−1 ≈ (1T )−1 for the largest meaningful value ofτ
in the autocorrelation. We show later that this relationship between1T andτ will
always be the case. The resulting autocorrelation then depends ont , 1T , andτ
but is subsequently integrated overτ . Thus, for a nonstationary ABL, the real-time
dependence of m.s.e. is never lost.

For large1T , though, the integral within ( ) in (4) stabilizes atC(t, τ ). The
stability is such that the subsequent integration in (4), viz.

∫ 1T
−1T C(t, τ ) dτ , is

unchanged by further increasing1T ; that is, this stability eliminates the integral’s
dependence on1T . Thus, by the ‘requisite1T ’ above we mean a1T long enough
that

1

1T

∫ 1T

−1T
C(t, τ )dτ ≈ 0.

As a result, S̄(t,1T ) is a valid estimate of themean at time t , and χ(γ ),
t − 1T ≤ γ ≤ t , representsdeviationsfrom themean. The right-hand side of
(4) is thenσ 2(t)3(t)/1T , whereσ 2(t) is thevarianceof χ(γ ), t −1T ≤ γ ≤ t ,
and3(t) is its integral scale. Because of the ‘requisite’ nature of1T , σ 2 and3 do
not depend on1T .

In numerical work, though, m.s.e. is taken to be zero whenever it becomes smal-
ler than the square of the accuracy (ACC) of the measurements. This is equivalent
to saying that the absolute value ofχ̄ (t,1T ) in (3) is less than the absolute value
of ACC, which effectively makes̄χ(t,1T ) equal zero to within the accuracy of
the measurements. It also makes the expected value ofχ(γ ) equal zero to within
the same accuracy. This is what we mean above by ‘small’, viz.χ̄ (t,1T ) is not
identically zero but is smaller than what can be detected with our sampling device.

The smallest1T that yields this condition is then the value for which, (i) a
viable estimate of themeanat timet can be defined, and (ii) a valid time description
of the relatedrandompart can be determined. For example, for the anemometer we
use to measure wind speed, the accuracy of the measurements is specified by the
manufacturer as±1% of the wind speed. This we take to mean that at any instant,
ACC = 0.01S̄(t). The magnitude of1T for our analysis is therefore defined in the
m.s.e. sense through (σ 23/1T ) < 10−4S̄2. Andreas and Treviño (1997) also use
instrument accuracy as a criterion for deciding how to proceed with a turbulence
analysis.
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2.2. DETERMINING THE SPECTRUM

We determine the magnitude of the averaging window AW from thememoryof the
turbulence, denoted asL and defined by

L(t) = max


[∫ t
t−β χ(γ )dγ

]2

2
∫ t
t−β χ2(γ )dγ

 . (5)

Hereβ is allowed to vary from a lower limit of zero to its upper limit1T ; recall
that χ(γ ) is defined overt − 1T ≤ γ ≤ t . Note thatL is a parameter that
has dimensions of time and is, by definition, a positive number; also note thatL,
because it is defined as amaximum, is not a function ofβ. A more recognizable
form forL is (cf. (3) and (4))

L(t) = max


∫ β

−β

(∫ t−|τ |/2

t−β+|τ |/2
χ
(
γ − τ

2

)
χ
(
γ + τ

2

)
dγ

)
dτ

2
∫ t

t−β
χ2(γ )dγ


= max

{∫ β

−β
R̂(t, τ, β)dτ

}
, (6)

where R̂ is a β-dependent approximation to the normalized autocorrelation of
χ(γ ), t −1T ≤ γ ≤ t .

As β varies from zero to1T , L equals3 in those cases when1T � 3 and
the autocorrelationof χ(γ ) is greater than or equal to zero for all values ofτ . For
our data, the condition1T � 3 is satisfied when(σ /S̄) > 0.03. In those cases
when1T � 3 and the autocorrelation becomes negative for some values ofτ , L
is greater than3. In the cases when (σ /S̄) < 0.03,L can still be determined, but
the measured signal is highly concentrated (small deviations) about itsmean.

In all cases, though, (6) is a measure of the separation in time beyond which
variables cease to be correlated. It is thus a measure of thedegree of randomness.
SmallL corresponds to a highly random (short memory) ABL; and largeL, to
not-so-random. Since classical analysis methods do not incorporate effects of such
variability, they can be designated as time-invariant memory methods (TIMMs).
The method formulated here, conversely, is designated the time-dependentmemory
method (TDMM). We show later, though, that TDMM reduces to TIMM when the
ABL is stationary. No TIMM, though, can produce the same information as does
TDMM when the ABL is nonstationary. VITA, on the other hand, also incorporates
effects of averaging window variability, but its averaging window is defined by the
user.
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In view of this interpretation, then, the magnitude of AW is taken to be 10L.
SinceL is always greater than or equal to3, it follows that AW ≥ 103. This
ensures that, (i) a representative sample of therandompart is analyzed, and (ii) all
correlations are lost within AW. As indicated in (7) below, defining AW this way
assigns uniform weight to values ofχ(γ ) that are backward fromt by an amount
less than or equal to 10L and assigns no weight to values ofχ(γ ) backward from
t by more than 10L. It also assigns no weight to elements of the ABLforward
in time from t . This is compatible with the fact that, in physical phenomena, the
future cannot influence the present.

Defining AW this way requires thatχ(γ ) be stationary only over [t − AW, t ]
and not over [t − 1T, t]. As t increases to define successive sets of1T , S̄(t),
and AW, the ABL is approximated by a succession of (locally) stationary segments
(cf. Holman and Hart, 1972) which, if necessary, can overlap one another. The
time extent of the segments here, though, are different for themeanand random
components. This reflects the adaptiveness of TDMM and is consistent with the
premise that the best averaging window ‘depends on the signal, and may differ
for different components’ (Jones and Parks, 1990). Typically, AW = 10L will be
less than1T ; but if this is not the case,1T should be taken as AW since the
choice of the numerical value of 10 in 10L is a decision made by the analyst. Some
investigators (see Henjes, 1997) prefer to use windows smaller than 10L.

Determining the spectrum ofχ(γ ) begins with

X(t, ω,AW) = 1√
AW

∫ t

t−AW
χ(γ )e−ιω(γ−t )dγ, (7)

whereω is in the interval [2π /AW, π (SR)]. Note (7) is a variant of the short-time
Fourier transform (STFT), which is the accepted method of tracking frequency
information as it changes with time (Cohen, 1995). Further note that (7) is also
a real-time average. The peculiar feature of (7), though, is that its ‘shortness’ is
defined by at-dependent property ofχ(γ ), t − 1T ≤ γ ≤ t , which, aside from
the factor of 10,cannot be adjusted by the user. This is what ensures that we are
using AW to analyzeχ(γ ), and not vice versa. Specifically, that the determined
properties ofX(t , ω, AW) are more closely related toχ(γ ) as opposed to AW; the
mathematics of Fourier analysis makes no distinction (cf. Blackwelder and Kaplan,
1976).

Even though STFT is known to introduce high-frequency information associ-
ated with the boxcar averaging interval, we show below, see Equation (11), that
these effects are negligible when determining8. That is, even though TDMM
produces spurious information in the STFT ofχ(γ ), this information does not carry
over into8. The reason is that, while (7)abruptly truncatesχ(γ ) at botht andt −
AW, producing ‘end effects’, the function8 nonetheless decaysgradually to zero
over an interval of sufficient extent to make these effects negligible. Note thatX is
a function of AW, the reason being that even though AW = 10L is considered long
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enough to ensure all relevant information is included in8, the STFT ofχ(γ ) still
depends on AW.

As in (3) and (4) above, the product

|X(t, ω,AW)|2 = 1

AW

∫ t

t−AW

∫ t

t−AW
χ(γ1)χ(γ2)e

−ιω(γ2−γ1)dγ1dγ2 (8)

becomes

|X(t, ω,AW)|2 =
∫ AW

−AW
C(t, τ )e−ιωτdτ ≈

∫ ∞
−∞

C(t, τ )e−ιωτdτ = 8(t, ω). (9)

Note that (9) begins on the left as a function of three variables and ends up on the
right as a function of two. The first part of that reduction is

1

AW

∫ t−|τ |/2

t−AW+|τ |/2
χ
(
γ − τ

2

)
χ
(
γ + τ

2

)
dγ = C(t, τ ). (10)

This is justified because, even though AW is (presumably) less than1T , it is by
definition still large enough to include all relevant information inC(t, τ ). The right-
hand side of (10) is thus independent of AW.

The last reduction∫ AW

−AW
C(t, τ )e−ιωτdτ ≈

∫ ∞
−∞

C(t, τ )e−ιωτdτ (11)

approximates the true spectrum by its truncated counterpart. This is justified be-
cause there is no information inC(t, τ ) beyondτ = 10L that contributes to the
value of the integral. In short, Fourier transformingC(t, τ ) in τ over the signal-
defined interval [−AW, AW] nullifies the effect of windowingχ(γ ) over [t − AW,
t ]. This reduction is important for computing8 since it is now not necessary to
allow AW→∞ to make that computation.

The spectral nature of8 follows from the inverse of (9); specifically,

σ 2(t) = 1

2π

∫ ∞
−∞

8(t, ω)dω ≈ 1

π

∫ ω1

ωs

8(t, ω)dω, (12)

whereωs = 2π /AW is the smallest frequency resolvable fromχ(γ ), andωl is the
Nyquist frequency (=π (SR)). Note there are twot-dependencies on the right-hand
side of (12); one in8 and the other inωs. A meaningful analysis must identify
both.

A note of caution is due here. It would seem to the unsuspecting that once AW is
defined, the FFT algorithm, or some variation of it, could be invoked to determine
frequency information in therandompart of the turbulence defined over [t − AW,
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t ]. This is not necessarily the case since there is no guarantee that AW will be
defined by the turbulence to be a power of 2.

3. Illustrative Examples

We applied TDMM to longitudinal wind speedU(γ ) measured with an ATI (Ap-
plied Technologies, Inc., Boulder, CO) three-axis sonic anemometer positioned
4 m above the ground and digitized at 10 Hz. We selected data recorded on 4
August 1991 at the Sevilletta National Wildlife Refuge in New Mexico beginning
at 20:00 local time. Andreas et al. (1998) describe the measurements in more detail.
According to ATI, the accuracy of the data is± 1% of themeanwind.

We took data beginning at 20:06 and first detrended them according to the
following procedure. We assumed that over a data block of length [t − 1T, t] the
wind had ameandefined asµ(γ ) ≈ µ1γ + µ0, whereµ1 andµ0 are constants for
each block but can vary from block to block. That is, we allowed for the possibility
that there may be a time-dependent trend in the wind.

The value ofµ1 was then approximated from the data by the random variable

µ1(t,1T,1γ ) = 1

1T

∫ t

t−1T
U(γ +1γ )− U(γ )

1γ
dγ, (13)

where1γ = (SR)−1. Note that, for the assumed time-dependence ofµ(γ ), the
expected value of (13) is

〈µ1(t,1T,1γ )〉 = 1

1T

∫ t

t−1T
[µ1(γ +1γ )+ µ0] − [µ1γ + µ0]

1γ
dγ = µ1.

(14)

That is, (13) is anunbiasedestimator of the instantaneous slope ofµ(γ ) (cf.
Treviño, 1985). This value was then multiplied byγ and subtracted fromU (γ ) over
the block in question. The remainder of that subtraction is the time seriesu(γ ) =
U(γ )−µ1γ , which has ameanthat is approximately constant over [t −1T, t], as
required by (1).

For the 20:06 data block, the algorithm yieldedµ1 = 0.01 m s−2, indicating
a mild trend in the wind. The requisite length of the block was found to be
1T = 25.6 s, which required thatH = 51.2 s (recall that data are available as
far back as 20:00). For this 25.6 s data block, we foundL = 1.46 s and, thus, AW =
14.6 s. The minimum value of the set of averages defined by (1) for this block was
1.61 m s−1 and its maximum was 1.74 m s−1. This we took as compatible with the
condition that themeanof the detrended series (µ0) is approximately constant.
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We also computed another scale for the data in question,

η(t) =


∫ t

t−AW
u2(γ )dγ∫ t

t−AW

(
du(γ )

dγ

)2

dγ


0.5

, (15)

where we approximated du(γ )/dγ as (SR)[u(γi+1) − u(γi)]. Note thatη(t) is by
definition also a positive number. It is characteristic of the small-scale behaviour
of the ABL; and, even though it too is a time scale,it is not proportional toL.
Specifically,L can be thought of as amacroscaleandη as amicroscale. η is the
equivalent of the Taylor microscaleλ according toη = λ/Ū when SR is high
enough (>1000 Hz) and the sampling volume of the sensor is small enough.

The difference betweenL andη is thatη is sensitive tolocal rearrangement of
the data points whileL is not. In other words, if we take the given data and display
them versus time in a column on a spreadsheet and then (locally) scramble this
column using a SORT command,η will likely change by a noticeable amount.L,
on the other hand, because it is defined as amaximum, will not. The value ofβ,
though, where this maximum occurs will change.

The value ofη we found for 20:06 is 0.25 s; our results are indicated in Figure
1. The functionω8(20:06,ω) is plotted versusω in rad s−1 (solid line). The broken
line has−2/3 slope, andσ (20:06) = 0.27 m s−1. The fact that the−2/3 slope line
does not pass squarely through the data indicates the inertial subrange is (slightly)
contaminated by large-scale anisotropy.

We next performed the analysis on a data segment 10 min into the record
(20:10). The value ofµ1 there was 0.00 m s−2 indicating no trend. The value ofµ0

oscillated between 2.23 m s−1 and 2.30 m s−1, and1T was 51.2 s (H = 102.4 s).
For these data, though,L was 1.08 s, which gave AW = 10.8 s and values ofσ and
η equal to 0.21 m s−1 and 0.18 s, respectively. The relatedω8(20:10,ω) is shown
in Figure 2.

Repeating this procedure beginning now at, say,t = 20:12 (or some later
time), will yield values forσ (20:12) andL(20:12). These iterations will produce
a sequence of values forσ , L, andη, as well as functionsω8(γ , ω). If these
collectively do not change with running time, we can conclude that the ABL is
stationary. In this case,ω8(γ , ω) will be similar to a spectrum obtained using
FFT. If the values do change, however, the ABL is nonstationary, and the time
scale over which they change is a measure of the time scale of the phenomenon
forcing the changes.

A unified method for assessing the degree-of-nonstationarity in a random signal
is found in Treviño (1982). It is called thegeneralized frequency spectrum(GFS)
concept. The essence of the GFS concept is to carry out a second frequency analysis
of 8(γ , ω) to obtain the GFS, denoted8(�, ω). The ‘spread’ of8(�, ω) about
� = 0 is then a measure of the degree-of-nonstationarity. Since8(�, ω) is in
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Figure 1.The functionω8(20:06,ω) versusω in rad s−1 (solid line). The values ofη andL at this
time are 0.25 s and 1.46 s (AW = 14.6 s), respectively. The value of1T is 25.6 s. The broken line
has−2/3 slope, andσ = 0.27 m s−1 is determined by averagingχ2(γ ) over [20:05:45.4, 20:06].

Figure 2.The functionω8(20:10,ω) versusω in rad s−1 (solid line). The values ofη andL at this
time are 0.18 s and 1.08 s (AW =10.8 s), respectively. The value of1T is 51.2 s. The broken line has
−2/3 slope, andσ = 0.21 m s−1 is determined by averagingχ2(γ ) over [20:09:49.2, 20:10].
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Figure 3. The functionω8(20:14,ω) versusω in rad s−1 (solid line). The values ofη andL are
0.22 s and 0.88 s (AW = 8.8 s), respectively. The value of1T is 51.2 s. The broken line has−2/3
slope, andσ = 0.19 m s−1 is determined by averagingχ2(γ ) over [20:13:51.2, 20:14].

general complex (i.e., it has real and imaginary parts), it is best to analyze the
behaviour of|8(�,ω)| about� = 0.

The time scale of changes inσ , we should note, is not the same as the time
scale of changes inL (or η). That is, it is possible forσ to vary slowly and forL
to vary quickly (or vice versa). Also keep in mind that instants in time whenσ is
‘large’ andL is ‘small’ correspond to energetic, highly random events. Conversely,
instants in time whenσ is ‘small’ andL is ‘large’ correspond to quiet, less random
events.

As further examples of TDMM, we also performed the analysis on a segment
14 min into the record. The value ofµ1 there was again 0.00 m s−2. The value of
µ0 oscillated between 1.52 m s−1 and 1.63 m s−1, and1T was again 51.2 s (H =
102.4 s). This timeL was 0.88 s, which gave AW = 8.8 s and values ofσ andη
equal to 0.19 m s−1 and 0.22 s, respectively. The relatedω8(20:14,ω) is shown
in Figure 3.

We took yet another segment of the series, this time 18 min into the record. The
value ofµ1 there was again 0.00 m s−2, and the value ofµ0 oscillated between
1.85 m s−1 and 1.92 m s−1. The1T was 51.2 s (H = 102.4 s) andL was 3.04 s;
values ofσ andη were 0.23 m s−1 and 0.28 s, respectively. The functionω8(20:18,
ω) is shown in Figure 4.

In Table II, we summarize the statistics that our four analyses have produced.
Fromµ0,L, andσ especially, we see that this time series is moderately nonstation-
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Figure 4. The functionω8(20:18,ω) versusω in rad s−1 (solid line). The values ofη andL are
0.28 s and 3.04 s (AW = 30.4 s), respectively. The value of1T is 51.2 s. The broken line has−2/3
slope, andσ = 0.23 m s−1 is determined by averagingχ2(γ ) over [20:17:29.6, 20:18].

TABLE II

Statistics derived by our time-dependent memory method (TDMM) for the data
segments that yielded Figures 1–4.

Time µ1 µ0 Range 1T L AW = 10L η σ

(m s−2) (m s−1) (s) (s) (s) (s) (m s−1)

20:06 0.01 1.61–1.74 25.6 1.46 14.6 0.21 0.27

20:10 0.00 2.23–2.30 51.2 1.08 10.8 0.18 0.21

20:14 0.00 1.52–1.63 51.2 0.88 8.8 0.22 0.19

20:18 0.00 1.85–1.92 51.2 3.04 30.4 0.28 0.23

ary. In practice, we would prepare more closely spaced samples of the statistics
summarized in Table II and look for patterns in the nonstationarity. For example,
intense mixing events would yield periods with smallerL and largerσ , while more
quiescent periods would show largerL and smallerσ .
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4. Summary Remarks

Advancing our understanding of the ABL requires obtaining meaningful statis-
tics that quantify intermittency. We have described an algorithm (TDMM) capable
of extracting, in real-time, such statistics from events lasting only a few tens of
seconds. TDMM makes no assumptions about the ABL other than it has a finite
memory. In other words, correlations eventually go to zero. The event itself dictates
the actual length of the required averaging. The quantities we compute are the
variance, memory, a scale considerably shorter than the memory akin to the Taylor
microscale, and the spectrum. The variations in these with time characterize inter-
mittency. We summarize TDMM by delineating the sequence of computations that
produce the spectral result and also the advantages that TDMM has over traditional
spectral analysis algorithms.

An H = 21T history ofS(γ ) is required to ascertain the instantaneousmean
S̄(t) and therandompartχ(γ ), t − 1T ≤ γ ≤ t ; see (1) and (2) and recall that
t represents the present time. Comparing m.s.e. with the sensor accuracy defines
1T , see Equation (3). The memoryL is then found fromχ(γ ), see (5) and (6).
Based on the physical interpretation ofL, AW is then defined as 10L and used to
obtain8(t , ω), see Equation (7), et seq.

The method formulated here (i) is frequency-shift invariant, meaning that it
is independent of the frequency domain ofχ(γ ); (ii) eliminates effects of user-
specific biases such as user-selected window lengths; (iii) eliminates corruption
caused by using a static algorithm (such as FFT) to analyse dynamic phenomena;
(iv) avoids degradation caused by using information from the future; (v) identifies,
in real time,if andhow frequency content, distribution, domain, and bandwidth,
are changing; and (vi) reduces the possibility that short-lived information is lost or
masked due to uncharacteristically long (or short) averaging intervals.

The three parametersσ , η, andL, obtained serve to quantify the local structure
of the ABL. A fourth parameter, thet-dependentmean, is also determined but,
since it is removed fromS, does not affect the behaviour of8. This parameter can
be thought of as an instantaneous DC component. The exact relationship between
1T and AW is known only a posteriori. Specifically, (1T /AW) > 0.1(σ /ACC)2,
where (recall) that ACC is 0.01̄S for our data.

As a final point, turbulence researchers agree that the proper choice of scale is
important in the search for Reynolds-number-independent features. Yet they typ-
ically use the same time interval for Reynolds averaging of all correlations being
examined. The fact that classical Reynolds averaging has been used to investigate
the structure of higher-order correlations and has not yet yielded an appreciable
understanding of the turbulence problem might be due to an inappropriate choice
of averaging times. The method formulated here addresses this concern.
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