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Abstract. We formulate a method for determining the smallest time intet&lover which a turbu-

lence time series can be averaged to decompose it into instantaneanandrandomcomponents.

From therandompart the method defines the optimal interval (or averaging window) AW over which
this part should be averaged to obtain the instantaneous spectrumABaihd AW vary randomly

with time and depend on physical properties of the turbulend@also depends on the accuracy of

the measurements and is thus independent of AW. Interesting features of the method are its real-time
capability and the non-equality between AW and'.
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1. Introduction

The atmospheric boundary layer (ABL) is by nature nonstationary at all time
scales. Another name for nonstationarityingermittency but, for the ABL, in-
termittency generally refers to short-term events. A key to understanding ABL
intermittency is the ability to say something meaningful about the turbulence
during such events.

Many researchers have reported results of investigations into requisite averaging
intervals for estimating turbulence statistics (e.g., Bradshaw, 1971; Lumley and
Panofsky, 1964, p. 36ff.; Gupta et al., 1971; Wyngaard, 1973; Blackwelder and
Kaplan, 1976; Wyngaard and Clifford, 1978; Sreenivasan et al., 1978; Andreas,
1988; Kaimal et al., 1989; Lenschow et al., 1994; Gluhovsky and Agee, 1994;
Gupta, 1996). None, however, has adequately considered the intervals necessary to
determine turbulence statistics within intermittent ABL events.

Here we extend the idea of minimum averaging to its lowest limit, one that
approaches the duration of intermittent events — tens of seconds. Keep in mind that
spectral analysis of the ABL requires quantifying not only the instantaneous spec-
trum & but also changes in it from one intermittent event to the next. Such changes
typically appear in frequency content, distribution, domain, and bandwidth.

To accomplish this, we formulate a method for identifying the smallest interval
AT over which an ABL time series can be averaged to define its instantaneous
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meanand accompanyindeviationsfrom the mean. In some circlemeanis re-
ferred to as thesystematicpart anddeviationsare called therandom part (see
Bendat and Piersol, 1971). From trexdompart, the method determines the op-
timal interval (or window) AW over which this part should be averaged to estimate
o.

The interesting feature of these determinations is not only that AWAghare
determined in real time and depend on instantaneous properties of the ABL, but
also that AW does not always equall’. The difference between AW amT is
due to dynamical effects and not to kinematical scale changes. That is, it is not
possible to re-scale the turbulence to make AW arfdequal to one another. This
difference is consistent with the fact thmeanandrandomcomponents represent
different degrees of freedom. In determinisgwe treat themeanas an instantan-
eous DC component; fronb emerges all the parameters necessary to assess the
instantaneous character of ABL turbulence.

The method localize® by assigning uniform weight to theandom part of
the time series within AW and zero weight to anything outside. The location of
AW in time is designated by, the presenttime. The length of AW is propor-
tional to ar-dependent parameter called tinemory As ¢ advances, the memory
changes; and, thus, the magnitude of AW varies. This has the effect of varying
the ‘block length’ of data used in computirig (cf. Henjes, 1997). The magnitude
and variability of the block length here, though, are defined byréimelom part
of the ABL time series rather than by the analyst. In this way, the method adapts
to instantaneous ABL properties and reduces the likelihood that short-lived events
are lost or masked due to user-defined averaging intervals that are too short or too
long.

Its real-time capability makes our method more versatile than existing al-
gorithms, such as thdliding FFT (Fast Fourier Transform) andriable interval
time averagingVITA) (Gupta et al., 1971; Blackwelder and Kaplan, 1976; Gupta,
1996). Real-time capability isliding FFT and VITA is unachievable because (i)
both use information from future ABL behaviour to determine present frequency
information; and (ii) both require interactive user input, which cannot reliably
emulate the changing properties of the ABL. Information from the future is used
whenever an algorithm determines ABL behaviour at tinfy using information
attimer + 7, T > 0, and all intervening times. The method formulated here
uses only information from the present and not-too-distant past to défime
information from the future is required. The method formulated here requires no
interactive user input. Lastlgliding FFT and VITA, in contrast to our method, use
the same averaging interval foreanandrandomcomponents of the turbulence.

For an optimal AW, the resulting® depends on but not on AW. That is, in
spite of inherent variability, AW is defined in such a way thais strictly ® (¢, w),
not ® (¢, w, AW), wherew is radian frequency. Asadvances, and successive sets
of AT, AW, and® are identified® (¢, w) estimates the instantaneous spectrum of
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the ABL. We demonstrate our method by applying it to wind speed data collected
in the ABL.

2. Formulation

2.1. SEPARATING MEANAND RANDOMPARTS

Consider the time seri¢g Z, y), which is sampled for the peridd—T, ¢], wherer
is thepresentime and7T > 0 can be on the order of houss.is the ‘running time’,
and S(Z, y) is sampled fast enough to contain inertial subrange informa#on.
is the height above the ground where the measurements were made and, for our
analysis, is disposable.
S(y) is first averaged according to

t

N S(y)dy = 8@, AT), )

where AT < T. Note the present time is the upper limit of this integration, and
only information from the present and earlier are used. No information forward of
t (i.e., the future) is invoked, making (1)real-timeaverage.

The intent is to determine how far back in time, definedAdy > 0, to begin
the integration in (1) such thai(r, AT) estimates the ABlmeanat timez. Al-
though here we implement (1) in an off-line fashion, (1) can be hardwired into a
signal processor to generate information that is as near real-time as possible for
the particular processor. The requisitd” is itself + dependent; and for (1) to be a
reliable measure of a local averagel” must be on the order of magnitude of the
related time scale of the ABL. Once thafl" is matched, though§(z, AT) loses
its AT dependence and becomes sim§ly).

If the expected value df(y) is (S(y)) = u(y) andu(y) ~ constant, say(z),
over[t — AT, t], n(r) is then a valid estimate aofS(z, AT)). For the ABL, the
requisite constancy qi(y) can be enforced by removing any trend that may exist
in S(y) over AT (cf. Trevifio, 1985).

Using (1), we form the sequence of valugy, AT) for y in the domain
t — AT < y < t. This requires values of(y) as far back as T = H (H
for ‘history’). For example, ifAT is 5 s, the sequence §{y, AT) values formed
in this way contains 5 s worth of 5 s averages, i.e., 10 s total of past and present
information. The motivation for forming the sequenge/, AT) in this way is to
identify therandompart of S(y) also overr — AT < y < t. The procedure for
doing this is defined in the following paragraph. In this way, b&th, AT) and
therandompart of S(y) can be identified over the same time soal’).

From the sequencé(y, AT), we form the time series

x(y, AT) = S(y) — S(y, AT). 2
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Table | illustrates this procedure for a present time of 09:46 local time and averages
of 1 s. Column 1 is actual time beginning at 09:45:57; column 2 is actual wind
speed data recorded at 10 Hz; column 3 is the 1 s averages (10 data points) of the
data in column 2, beginning at 09:46 (the present) and running backwards until
09:45:59.1. That is, all the elements in column 3 are averages defined as in (1) for
the succession of ‘present’ times 09:45:59.1, 09:45:59.2, 09:45:59,%9:46:00.

The quantity in column 3 corresponding to 09:45:59.1 is the average of the ten
guantities in Column 2 from 09:45:59.1 back to 09:45:58.2.

Column 4 is the difference between column 2 and column 3. If 1 s was indeed
the window that ‘matches’ the related time scale of the data, Column 3 would
then be the time-dependemeanof the data for the succession of ‘present’ times
09:45:59.1, 09:45:59.2, 09:45:59.3, ..., 09:46:00, and column 4 would be the cor-
responding time-dependergndompart. An alternate designation for the totality
of information in Column 4 is((y), t — AT < y < t. This notation will be used
hereafter.

Next, evaluate the quantity

m I d
S.e= {E/I_ATX(J/) J/}

1 2 ot t
_ {(_T) / / x(yl)x(yz)dyldyz} = %6, AT) )
t—AT Jt—AT

for a specifiedr (e.g., 09:46) and values a7 beginning, say, Wit AT in (1)
initially the inverse of the sampling rate (SR) and then increasing by successive
doubling. Thus, if SR is 10 Hz, the fir&kT is 0.1 s, and successive values are
0.2s,04s,0.8s,.... Care must be takdmough, to ensure tha# does not
exceedr . If it does, select a laterand begin again.

In (3), m.s.e. designates theean-square erro(see Papoulis, 1965, p. 323, et
seq.), andy(y) is a time series whose average is not identically zero, either in
the time-average sense (over the requiaif€) or in the ensemble-average sense —
cf., Column 4, Table I. Both averages, however, are ‘small’, with the definition of
‘small’ to be given shortly.

With the transformation of coordinates= (y1 + y»)/2 andt = y, — y1, the
double integral within { } in (3) becomes

1 AT 1 /t—lr/Z T T
m.s.e= — _— xly—=)x(y+=)d )dr,
AT J_ar <(AT - |T|) t—AT+|7|/2 (J/ 2> (J/ 2) 4
(4)

where both the scale factoAT — |r|)~! and the limits of the integration ip are
adjusted to accommodate the fact that only a finite amount of data are available

2
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TABLE |

Example of obtaining theandompart of a series of turbulence
data using (1) and (2). He®®T =1 s.

Actual time  Measured data Firstaverage Random part
[r] (SO S, AD]  x()]

09:45:57.0 1.79
09:45:57.1 1.78
09:45:57.2 1.76
09:45:57.3 1.71
09:45:57.4  1.63
09:45:57.5 155
09:45:57.6 144
09:45:57.7 1.52
09:45:57.8 1.42
09:45:57.9 153
09:45:58.0 1.58
09:45:58.1 1.59
09:45:58.2 1.48
09:45:58.3 1.60
09:45:58.4 1.66
09:45:58.5 1.66
09:45:58.6  1.68
09:45:58.7 1.74
09:45:58.8 1.70
09:45:58.9 1.84
09:45:59.0 1.82

09:45:59.1  1.77 1.70 0.07
09:45:59.2  1.72 1.72 0.00
09:45:59.3 1.65 1.72 —0.07
09:45:59.4  1.65 1.72 —0.07
09:45:59.5 1.78 1.74 0.04
09:45:50.6 1.71 1.74 —0.03
09:45:59.7  1.65 1.73 —0.08
09:45:59.8 1.64 1.72 —0.08
09:45:59.9 1.74 171 0.03

09:46:00.0 1.86 1.72 0.14
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the computation. The expression within the outer ( ) is the autocorrelation. The
r-dependence of the scale factor can be eliminate7ifis considerably larger
than the largest value affor which the autocorrelation is non-zero; that isAif”

is large enough thatAT — |7])~t ~ (AT)~? for the largest meaningful value of

in the autocorrelation. We show later that this relationship betweErandt will
always be the case. The resulting autocorrelation then dependsAdh, andt

but is subsequently integrated owerThus, for a nonstationary ABL, the real-time
dependence of m.s.e. is never lost.

For large AT, though, the integral within ( ) in (4) stabilizes @iz, 7). The
stability is such that the subsequent integration in (4), fszTT C(t,t) dr, is
unchanged by further increasiagl’; that is, this stability eliminates the integral’s
dependence onT. Thus, by the ‘requisitéA T’ above we mean AT long enough
that

1 AT

— C(t, 7)dr ~ 0.
AT J_ar

As a result,S(r, AT) is a valid estimate of theneanat time 7, and x(y),
t — AT < y < t, representsleviationsfrom the mean The right-hand side of
(4) is theno?(t)A(t)/ AT, whereo (1) is thevarianceof x (y),t — AT <y <t,
andA (¢) is itsintegral scale. Because of the ‘requisite’ nature/df’, o2 and A do
not depend om\T'.

In numerical work, though, m.s.e. is taken to be zero whenever it becomes smal-
ler than the square of the accuracy (ACC) of the measurements. This is equivalent
to saying that the absolute value pft, AT) in (3) is less than the absolute value
of ACC, which effectively makeg (z, AT) equal zero to within the accuracy of
the measurements. It also makes the expected valpé)of equal zero to within
the same accuracy. This is what we mean above by ‘small’,jMiz. AT) is not
identically zero but is smaller than what can be detected with our sampling device.

The smallestAT that yields this condition is then the value for which, (i) a
viable estimate of thmeanat timer can be defined, and (ii) a valid time description
of the relatedandompart can be determined. For example, for the anemometer we
use to measure wind speed, the accuracy of the measurements is specified by the
manufacturer as1% of the wind speed. This we take to mean that at any instant,
ACC = 0.015(r). The magnitude oA T for our analysis is therefore defined in the
m.s.e. sense through{A/AT) < 107452, Andreas and Trevifio (1997) also use
instrument accuracy as a criterion for deciding how to proceed with a turbulence
analysis.
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2.2. DETERMINING THE SPECTRUM

We determine the magnitude of the averaging window AW frormtieenoryof the
turbulence, denoted dsand defined by

[f,’_ﬁ X(J/)dl/]z

L(t) = max -
2 [i_g x3(y)dy

(®)

Hereg is allowed to vary from a lower limit of zero to its upper limitT'; recall
that x(y) is defined over — AT < y < t. Note thatL is a parameter that
has dimensions of time and is, by definition, a positive number; also notd that
because it is defined asnaaximum is not a function of. A more recognizable
form for L is (cf. (3) and (4))

B t—Iz|/2 . .
xX\y—35)x\vt+t35 dy)dr
L(t) = max /—ﬁ (/t—ﬁ+|r/2 <t 2) < 2)
2/ x*(y)dy
t—B
/3 A
= max / R(t, T, ﬁ)df} , )
-B

where R is a g-dependent approximation to the normalized autocorrelation of
x(y)t—AT <y <t.

As B varies from zero taAAT, L equalsA in those cases whenT > A and
the autocorrelatiorof x (y) is greater than or equal to zero for all valuesafFor
our data, the conditioT > A is satisfied wherio/S) > 0.03. In those cases
whenAT > A and the autocorrelation becomes negative for some valuesiof
is greater tham\. In the cases whem(S) < 0.03, L can still be determined, but
the measured signal is highly concentrated (small deviations) abooéaa

In all cases, though, (6) is a measure of the separation in time beyond which
variables cease to be correlated. It is thus a measure ofetiree of randomness
Small L corresponds to a highly random (short memory) ABL; and laigé¢o
not-so-random. Since classical analysis methods do not incorporate effects of such
variability, they can be designated as tiimeariant memory methods (TIMMS).
The method formulated here, conversely, is designated thed@pendenmemory
method (TDMM). We show later, though, that TDMM reduces to TIMM when the
ABL is stationary. No TIMM, though, can produce the same information as does
TDMM when the ABL is nonstationary. VITA, on the other hand, also incorporates
effects of averaging window variability, but its averaging window is defined by the
user.
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In view of this interpretation, then, the magnitude of AW is taken to be 10L.
Since L is always greater than or equal 1o it follows that AW > 10A. This
ensures that, (i) a representative sample oféimelompart is analyzed, and (ii) all
correlations are lost within AW. As indicated in (7) below, defining AW this way
assigns uniform weight to values g{y) that are backward fromby an amount
less than or equal to 10L and assigns no weight to valuggpf backward from
¢t by more than 10L. It also assigns no weight to elements of the ABward
in time from¢. This is compatible with the fact that, in physical phenomena, the
future cannot influence the present.

Defining AW this way requires that(y) be stationary only over [— AW, ¢]
and not over { — AT, t]. Ast increases to define successive set\@f, S(z),
and AW, the ABL is approximated by a succession of (locally) stationary segments
(cf. Holman and Hart, 1972) which, if necessary, can overlap one another. The
time extent of the segments here, though, are different fombanandrandom
components. This reflects the adaptiveness of TDMM and is consistent with the
premise that the best averaging window ‘depends on the signal, and may differ
for different components’ (Jones and Parks, 1990). Typically, AW = 10L will be
less thanAT; but if this is not the caseAT should be taken as AW since the
choice of the numerical value of 10 in 10L is a decision made by the analyst. Some
investigators (see Henjes, 1997) prefer to use windows smaller than 10L.

Determining the spectrum ¢f(y) begins with

X(t, 0, AW) = x(y)e Y dy, (7

l t
\/m /tAW
wherew is in the interval [Z/AW, 7 (SR)]. Note (7) is a variant of the short-time
Fourier transform (STFT), which is the accepted method of tracking frequency
information as it changes with time (Cohen, 1995). Further note that (7) is also
a real-time average. The peculiar feature of (7), though, is that its ‘shortness’ is
defined by a-dependent property of(y),t — AT < y < t, which, aside from
the factor of 10cannot be adjusted by the usdthis is what ensures that we are
using AW to analyzex (y), and not vice versa. Specifically, that the determined
properties ofX (¢, w, AW) are more closely related tp(y) as opposed to AW, the
mathematics of Fourier analysis makes no distinction (cf. Blackwelder and Kaplan,
1976).

Even though STFT is known to introduce high-frequency information associ-
ated with the boxcar averaging interval, we show below, see Equation (11), that
these effects are negligible when determinieg That is, even though TDMM
produces spurious information in the STFTxaf ), this information does not carry
over into®. The reason is that, while (Abruptlytruncatesy (y) at bothr andr —

AW, producing ‘end effects’, the functio® nonetheless decagsaduallyto zero
over an interval of sufficient extent to make these effects negligible. Notetisat
a function of AW, the reason being that even though AW = 10L is considered long
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enough to ensure all relevant information is includeairthe STFT ofy (y) still
depends on AW.
As in (3) and (4) above, the product

1 t t
1X (1, w, AW)|? = AW / / X (YD) x (y2)e 2 dyrdy, (8)
t—AW J—AW
becomes
AW [e’s)
1X (1, w0, AW)|? :/ C(t,t)e ““'dr ~/ C(t,7)e “Tdr = ®(z, ). (9)
—AW —00

Note that (9) begins on the left as a function of three variables and ends up on the
right as a function of two. The first part of that reduction is

1 iz T T
W [—AWHT/ZX (y 2) X (y + 2) % (t,7) (10)

This is justified because, even though AW is (presumably) less At¥anit is by
definition still large enough to include all relevant informatioricr, 7). The right-
hand side of (10) is thus independent of AW.

The last reduction

AW [ee)
/ C(t,t)e_“"fdt%/ C(t,r)e'“"dr (12)

—AW —00

approximates the true spectrum by its truncated counterpart. This is justified be-
cause there is no information ifi(z, ) beyondr = 10L that contributes to the
value of the integral. In short, Fourier transformiag¢, t) in T over the signal-
defined interval £ AW, AW] nullifies the effect of windowingy (y) over | — AW,
t]. This reduction is important for computing since it is now not necessary to
allow AW — oo to make that computation.

The spectral nature @b follows from the inverse of (9); specifically,

w1

o?(t) = i/ d(t, w)dw ~ 1/ d(t, w)dw, (12)
2 J_ o T Jo

s

wherew, = 27/AW is the smallest frequency resolvable frgnfy ), andw; is the
Nyquist frequency (3r(SR)). Note there are twedependencies on the right-hand
side of (12); one in® and the other inv;. A meaningful analysis must identify
both.

A note of caution is due here. It would seem to the unsuspecting that once AW is
defined, the FFT algorithm, or some variation of it, could be invoked to determine
frequency information in theandompart of the turbulence defined overf AW,
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t]. This is not necessarily the case since there is no guarantee that AW will be
defined by the turbulence to be a power of 2.

3. lllustrative Examples

We applied TDMM to longitudinal wind speed(y) measured with an ATI (Ap-
plied Technologies, Inc., Boulder, CO) three-axis sonic anemometer positioned
4 m above the ground and digitized at 10 Hz. We selected data recorded on 4
August 1991 at the Sevilletta National Wildlife Refuge in New Mexico beginning
at 20:00 local time. Andreas et al. (1998) describe the measurements in more detail.
According to ATI, the accuracy of the datads1% of themeanwind.

We took data beginning at 20:06 and first detrended them according to the
following procedure. We assumed that over a data block of lengthAT, 7] the
wind had ameandefined as«(y) =~ w1y + no, wherew; andug are constants for
each block but can vary from block to block. That is, we allowed for the possibility
that there may be a time-dependent trend in the wind.

The value ofu; was then approximated from the data by the random variable

Uty + Ay) = Ul(y)
Ay

1 t
t. AT, Ay) = — dy, 13
ma(t, Y) NG /I—AT 4 (13)

where Ay = (SR)™. Note that, for the assumed time-dependence.(@f), the
expected value of (13) is

1 Ima(y + Ay) + ol — [Hay + pol
AT Ji-ar Ay

(14)

That is, (13) is arunbiasedestimator of the instantaneous slopeudi/) (cf.
Trevifio, 1985). This value was then multiplied pynd subtracted fror@y (y) over
the block in question. The remainder of that subtraction is the time sefigs=
U(y) — n1y, which has aneanthat is approximately constant overf AT, t], as
required by (1).

For the 20:06 data block, the algorithm yieldgd = 0.01 m s?, indicating
a mild trend in the wind. The requisite length of the block was found to be
AT = 25.6 s, which required tha/ = 51.2 s (recall that data are available as
far back as 20:00). For this 25.6 s data block, we folird1.46 s and, thus, AW =
14.6 s. The minimum value of the set of averages defined by (1) for this block was
1.61 m st and its maximum was 1.74 nts This we took as compatible with the
condition that theneanof the detrended serieg ) is approximately constant.
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We also computed another scale for the data in question,

t
/ u?(y)dy
t—AW

t 2

L)
1—AW dy

where we approximatedudy )/dy as (SR)u(y;y1) — u(y;)]. Note thatn(¢) is by
definition also a positive number. It is characteristic of the small-scale behaviour
of the ABL,; and, even though it too is a time scaileis not proportional toL.
Specifically,L can be thought of as macroscaleandn as amicroscale 7 is the
equivalent of the Taylor microscale according ton = A/U when SR is high
enough £1000 Hz) and the sampling volume of the sensor is small enough.

The difference betweeh andy is thatp is sensitive tdocal rearrangement of
the data points whilé is not. In other words, if we take the given data and display
them versus time in a column on a spreadsheet and then (locally) scramble this
column using a SORT commang will likely change by a noticeable amourit,
on the other hand, because it is defined asaximum will not. The value of,
though, where this maximum occurs will change.

The value ofy we found for 20:06 is 0.25 s; our results are indicated in Figure
1. The functionw®(20:06,w) is plotted versus in rad s* (solid line). The broken
line has—2/3 slope, ana (20:06) = 0.27 m st. The fact that the-2/3 slope line
does not pass squarely through the data indicates the inertial subrange is (slightly)
contaminated by large-scale anisotropy.

We next performed the analysis on a data segment 10 min into the record
(20:10). The value ofi; there was 0.00 m€ indicating no trend. The value of,
oscillated between 2.23 ntsand 2.30 ms!, andAT was 51.2 sf = 102.4 s).

For these data, thougli, was 1.08 s, which gave AW = 10.8 s and values afnd
n equal to 0.21 ms' and 0.18 s, respectively. The related(20:10,w) is shown
in Figure 2.

Repeating this procedure beginning now at, say 20:12 (or some later
time), will yield values foro (20:12) andL(20:12). These iterations will produce
a sequence of values fer, L, andn, as well as functiongo®(y, w). If these
collectively do not change with running time, we can conclude that the ABL is
stationary. In this casey®(y, w) will be similar to a spectrum obtained using
FFT. If the values do change, however, the ABL is nonstationary, and the time
scale over which they change is a measure of the time scale of the phenomenon
forcing the changes.

A unified method for assessing the degree-of-nonstationarity in a random signal
is found in Trevifio (1982). It is called thgeneralized frequency spectr@FS)
concept. The essence of the GFS concept is to carry out a second frequency analysis
of ®(y, w) to obtain the GFS, denoteli(2, w). The ‘spread’ of®($2, w) about
Q = 0 is then a measure of the degree-of-nonstationarity. S#Ee, ) is in

0.5

n(t) = (15)
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Figure 1.The functionw®(20:06,w) versusw in rad s~1 (solid line). The values of andL at this
time are 0.25 s and 1.46 s (AW = 14.6 s), respectively. The valueTofs 25.6 s. The broken line
has—2/3 slope, and = 0.27 m 51 is determined by averaging?(y) over [20:05:45.4, 20:06].

—1
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L ~ _
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Figure 2.The functiono®(20:10,w) versusw in rad s~1 (solid line). The values of andL at this
time are 0.18 s and 1.08 s (AW =10.8 s), respectively. The valuelols 51.2 s. The broken line has
—2/3 slope, and = 0.21 m 51 is determined by averaging?(y) over [20:09:49.2, 20:10].
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Figure 3. The functionw®(20:14, w) versusw in rad s'1 (solid line). The values of and L are
0.22 s and 0.88 s (AW = 8.8 s), respectively. The valuaafis 51.2 s. The broken line has2/3
slope, andr = 0.19 m s'1 is determined by averaging?(y) over [20:13:51.2, 20:14].

general complex (i.e., it has real and imaginary parts), it is best to analyze the
behaviour of ® (22, w)| about2 = 0.

The time scale of changes i, we should note, is not the same as the time
scale of changes ih (or ). That is, it is possible fos to vary slowly and forL
to vary quickly (or vice versa). Also keep in mind that instants in time whés
‘large’ andL is ‘small’ correspond to energetic, highly random events. Conversely,
instants in time when is ‘small’ andL is ‘large’ correspond to quiet, less random
events.

As further examples of TDMM, we also performed the analysis on a segment
14 min into the record. The value pf; there was again 0.00 nT& The value of
wo oscillated between 1.52 ntsand 1.63 m s, andAT was again 51.2 sH =
102.4 s). This timel was 0.88 s, which gave AW = 8.8 s and valuesradnd
equal to 0.19 m st and 0.22 s, respectively. The related(20:14,0) is shown
in Figure 3.

We took yet another segment of the series, this time 18 min into the record. The
value of u; there was again 0.00 nT% and the value ofig oscillated between
1.85mstand 1.92 mst. The AT was 51.2 s = 102.4 s) and. was 3.04 s;
values ofo andn were 0.23 mst and 0.28 s, respectively. The functied (20:18,

w) is shown in Figure 4.

In Table Il, we summarize the statistics that our four analyses have produced.

Frompuo, L, ando especially, we see that this time series is moderately nonstation-
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Figure 4. The functionw®(20:18, w) versuse in rad 1 (solid line). The values off and L are
0.28 s and 3.04 s (AW = 30.4 s), respectively. The valua @fis 51.2 s. The broken line has2/3
slope, andr = 0.23 m 51 is determined by averagirpgz(y) over [20:17:29.6, 20:18].

TABLE Il

Statistics derived by our time-dependent memory method (TDMM) for the data
segments that yielded Figures 1-4.

Time ujp noRange AT L AW=10L 1 o
ms? msh (5 () © (s) (msh
20:06 0.01 1.61-1.74 256 146 14.6 0.21 0.27
20:10 0.00 2.23-2.30 51.2 1.08 10.8 0.18 0.21
20:14 0.00 1.52-1.63 51.2 0.88 8.8 0.22 0.19
20:18 0.00 1.85-1.92 51.2 3.04 304 0.28 0.23

ary. In practice, we would prepare more closely spaced samples of the statistics
summarized in Table Il and look for patterns in the nonstationarity. For example,
intense mixing events would yield periods with smalleand largew, while more
guiescent periods would show largerand smallee .
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4. Summary Remarks

Advancing our understanding of the ABL requires obtaining meaningful statis-
tics that quantify intermittency. We have described an algorithm (TDMM) capable
of extracting, in real-time, such statistics from events lasting only a few tens of
seconds. TDMM makes no assumptions about the ABL other than it has a finite
memory. In other words, correlations eventually go to zero. The event itself dictates
the actual length of the required averaging. The quantities we compute are the
variance, memory, a scale considerably shorter than the memory akin to the Taylor
microscale, and the spectrum. The variations in these with time characterize inter-
mittency. We summarize TDMM by delineating the sequence of computations that
produce the spectral result and also the advantages that TDMM has over traditional
spectral analysis algorithms.

An H = 2AT history of S(y) is required to ascertain the instantanecusan
S(r) and therandompart x (), t — AT < y < t; see (1) and (2) and recall that
t represents the present time. Comparing m.s.e. with the sensor accuracy defines
AT, see Equation (3). The memolyis then found fromy (y), see (5) and (6).
Based on the physical interpretation Iof AW is then defined as 10L and used to
obtain® (¢, w), see Equation (7), et seq.

The method formulated here (i) is frequency-shift invariant, meaning that it
is independent of the frequency domain ofy); (ii) eliminates effects of user-
specific biases such as user-selected window lengths; (iii) eliminates corruption
caused by using a static algorithm (such as FFT) to analyse dynamic phenomena;
(iv) avoids degradation caused by using information from the future; (v) identifies,
in real time,if andhow frequency content, distribution, domain, and bandwidth,
are changing; and (vi) reduces the possibility that short-lived information is lost or
masked due to uncharacteristically long (or short) averaging intervals.

The three parametets n, andL, obtained serve to quantify the local structure
of the ABL. A fourth parameter, the-dependenimean is also determined but,
since it is removed fron§, does not affect the behaviour &f This parameter can
be thought of as an instantaneous DC component. The exact relationship between
AT and AW is known only a posteriori. Specificallyr{/AW) > 0.1(/ACC)?,
where (recall) that ACC is 0.Glfor our data.

As a final point, turbulence researchers agree that the proper choice of scale is
important in the search for Reynolds-number-independent features. Yet they typ-
ically use the same time interval for Reynolds averaging of all correlations being
examined. The fact that classical Reynolds averaging has been used to investigate
the structure of higher-order correlations and has not yet yielded an appreciable
understanding of the turbulence problem might be due to an inappropriate choice
of averaging times. The method formulated here addresses this concern.
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