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Because turbulent fluctuations in the atmospheric refractive index (n) at a wavelength X are related to fluctuationsin the temperature (t) and the humidity (q) by n = A(X, P, T, Q)t + B(X, P, T, Q)q, it is possible to estimate the re-fractive-index structure parameter Cn2 from meteorological quantities. I describe and evaluate two such estimationprocedures, one based on the velocity, temperature, and humidity scales u, t, and q and a second based on theroutine meteorological quantities Uh, T - Th, and Q - Qh. The subscript h here denotes the wind speed (Uh),temperature (Th), or humidity (Qh) at a reference height h; the subscript s indicates the surface value. I alsodevelop analytical expressions for the coefficients A and B as functions of A, the atmospheric pressure (P), and thetemperature and the humidity in four wavelength regions: visible (including near infrared), an infrared window,near millimeter, and radio. In a sensitivity analysis of the two estimation procedures, the core of the paper, Idemonstrate that the accuracy of the C,,2 estimate is a strong function of the Bowen ratio (Bo). At two Bo valueswithin the interval [-10, 10], one dependent on A and the other dependent on meteorological conditions, theuncertainty in the C estimate becomes infinite.

1. INTRODUCTION

The refractive-index structure parameter C2, defined from

[n(x) - n(x + r)]2 = Cn2r"3 (1.1)

is an important quantity in the study of electromagnetic
wave propagation in the atmospheric surface layer. Here n
is the turbulent refractive-index fluctuation, x and x + r are
two points in space, r is the magnitude of r, and the overbar
denotes a time average. C 2 is required in parameterizing
theoretical studies,12 for evaluating instrument design and
performance, 3 -5 and for analyzing field data.6 -9 For exam-
ple, C and the turbulence inner scale 10 are the only two
variables in the three-dimensional Tatarskii' 0 spectrum for
refractive-index fluctuations,

P3n(k) = 0.033Cn2k- 1 3 exp(k2/k 2), (1.2)

where k is the three-dimensional turbulence wave number
and k = 5 92/1o. This spectrum is used frequently in mod-
eling refractive-index turbulence and thus for evaluating
how electro-optical systems interact with the turbulence."4

In one dimension, Eq. (1.2) reduces in the inertial-convec-
tive subrange to

bln(kj) = 0.249C k 3 (1.3)

where k is the one-dimensional wave number. This spec-
trum has been useful in describing measured refractive-
index spectra.9,1,2

Because C2 is fundamental to understanding electromag-
netic wave propagation in the atmosphere, it would be useful
to know how to estimate Cn2 from measured or modeled
meteorological quantities. Electro-optical systems could
then be optimized beforehand for the C2 climate likely to be
encountered during a field deployment.

Friehel and Davidson et al.14 previously considered this
problem and developed methods of estimating C 2 from me-

teorological measurements over the ocean. I consider here
the problem of estimating C 2 over snow and snow-covered
sea ice and expand on the analyses by Friehe and Davidson
et al. in several ways. They considered light only in the
visible; I look at four wavelength regions: (1) visible (to near
infrared), 0.36-3 m; (2) an infrared window, 7.8-19 m; (3)
near millimeter, 0.3-3 mm; and (4) radio waves, 3 mm to
infinity. Friehe and Davidson et al. based their estimates of
Cn on the bulk meteorological quantities Uh, AT, and Q,
where Uh is the wind speed at a reference height h, AT is the
potential temperature difference between the surface and
the height h, and Q is the analogous absolute humidity
difference. I work with these bulk quantities, too, but also
show how to estimate C 2 from u*, t*, and q*, which are
scales related to the vertical fluxes of momentum and sensi-
ble and latent heat, respectively. Although Davidson et al.,
Wyngaard and Lemone,15 and Kohsieki6 hinted how to use
u*, t*, and q* to find C, I treat the problem explicitly and,
most important, do a detailed sensitivity analysis of both
methods of estimating C,2. This analysis shows that neither
method yields C,2 accurately for all conditions; both meth-
ods for all four wavelength regions suffer from poor accuracy
for some limited range of Bowen ratios. Friehe and David-
son et al. did no similar sensitivity analysis to my knowledge.

The methods that I develop are applicable to any horizon-
tally homogeneous surface. I focus on snow and sea ice
because the drag coefficient and the scalar roughness, which
are necessary to relate C2 to bulk meteorological quantities,
have been evaluated for these surfaces and are fairly simple
to parameterize.

2. RELATING REFRACTIVE INDEX TO
METEOROLOGY

The instantaneous refractive index at an arbitrary electro-
magnetic wavelength is usually written as a function of the
instantaneous atmospheric pressure p (in hectopascals), the
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instantaneous temperature (in degrees Kelvin), and the

instantaneous absolute humidity (in kilograms per cubic

meter):

F = f( P, t, w). (2.1)

Doing a Reynolds decomposition of each of these variables,

we write

h = N + n, (2.2)

P = P + p, (2.3)

t= T + t, (2.4)

= Q + q. (2.5)

where on each line the uppercase variable is the ensemble

average and the lowercase variable without the tilde is the

zero-mean turbulent fluctuation about that mean.

Let us expand Eq. (2.1) as a multivariable Taylor series

about average conditions. Assuming that the turbulent

fluctuations are small compared with their respective

means, we need keep only the first-order terms; consequent-

ly,

F = N + n = f(X, P, T, Q) + ( P)
Qp P,TQ)

+ (1 TIt + PT )q. (2.6)
(at P,.Q \ O.v)t P,.Q /

Taking the ensemble or time average of Eq. (2.6), we see

that, to first order,

N = f(X, P, T, Q) (2.7)

and

=(p TQ)P (t P,TQ) +(q PT.Q)
(2.8)

Gossard, 17 Friehe et al., Wesely,18 Hill et al.,19 and McBean

and Elliott20 all evaluated the contribution of the pressure

term in Eq. (2.8), and all found it negligible in the atmo-

sphere; therefore I simplify Eq. (2.8) to

n = A(, P, T, Q)t + B(, P, T, Q)q,

of pressure, temperature, and humidity values. I want to

find analytical expressions that will let us find A and B easily

for arbitrary meteorological conditions. At present, four

useful regions in the electromagnetic spectrum have yielded

experimental data that satisfy Eq. (2.1). These are the

visible region (including the near infrared), an infrared win-

dow, the near-millimeter region, and the radio region. I

shall derive expressions for A and B in each of these regions.

A. Visible Region (Wavelengths from 0.36 to 3 pm)

According to Owens,21 for visible and near-infrared wave-

lengths, 0.36-3 Am,22 the instantaneous refractivity 106 (h, -

1) has contributions from dry air (Ftud) and from water vapor

106( - 1) = hud + htU, (3.1)

where the subscript u indicates visible and near-infrared

wavelengths, and the subscripts d and u indicate contribu-

tions from dry air and water vapor. Owens gave

hFd = m,(X)[(p - )/t], (3.2)

FZU = m 9 (X)(e/t), (3.3)

where p is the total instantaneous atmospheric pressure in

hectopascals and e is the instantaneous vapor pressure, also

in hectopascals. The functions ml and m2 are

m,(X) = 23.7134 + 6839.397 + 45.473 (3.4)
130 - or 38.9 - a'2

m,(X) = 64.8731 + 0.58058a' - 0.0071150aT + 0.0008851a6,

(3.5)

where
a= X I (3.6)

for X in micrometers. Combining Eqs. (3.1)-(3.3) gives

106(h, - 1) = ml(X)(p/t) + [m.(X) - m,(X)](e/t). (3.7)

From the ideal gas law,

(2.9)

where R (= 8.31441 J K-l mol-) is the universal gas con-

(2.10) stant and Mu (= 18.0160 X 10-3 kg mol-) is the molecular

weight of water. Thus e = 4.6150Qt, and Eq. (3.7) becomes

(2.11)

Because for a chosen electromagnetic wavelength and a

given set of meteorological conditions A and B are constant,

we see from Eq. (2.9) that turbulent fluctuations in the

refractive index depend linearly on turbulent fluctuations in

the temperature and the humidity. Equation (2.9) is thus

the basis of any attempt to relate turbulence in the refractive

index to meteorological parameters. We must therefore

know A and B.

3. FINDING A AND B

Hill et al.19 presented plots of A and B values over the

wavelength continuum from 5.7 gm to radio wavelengths,

but theirs were tedious line-by-line computations for one set

106(h, - 1) = mj(X)(p/t) + 4.6150 [m,(\) - m,(XN). (3.9)

Applying Eqs. (2.10) and (2.11) to Eq. (3.9), we find that

A, =-10-6m,(X)(P/T2),

B, = 4.6150 X 10- 6[m2(X) - ml(X)]. (3.11)

At a wavelength of 0.55 m, for example, A, = 79.0 X 10-6

(P/T2), and B., =-56.4 X 10-6.

B. Infrared Window (Wavelengths from 7.8 to 19 pim)

Hill and Lawrence22 developed an empirical expression for

the refractivity hiF, that is due to water vapor in the infrared

window between 7.8 and 19 gim. With their function, the

total instantaneous refractivity in that region is

106(hi - 1) = hFd + hi,,, (3.12)

where

A = f P

aq P,T,Q

(3.8)= 10-2QFRIMt.,

(3.10)
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where Eq. (3.2) gives the dry-air contribution Ftd.21 From
Eq. (3.8), Eq. (3.12) becomes

106(hi - 1) = mj(X)(p/) - 4.6150m,(X)q + hi.. (3.13)

For temperatures between -40 and 400C, Hill and Lawrence
gave [ 957 - 928 0 4 (X - 1) + 3.747 X 1061

1.03P'17 -19.8X2 + 8.2x 4
-1.7X

8 12499 -x J

(3.14)

where

= F/273.16K,

x = (10 sm)IN.

(3.15)

(3.16)

Note that their Eq. (14) contains two typographical errors
that are corrected in Eq. (3.14) here.

We see from Eqs. (3.13), (3.14), (2.10), and (2.11) that in
this spectral region the A and B values have both dry-air (And
and Bd) and water-vapor (Ai. and BiW) contributions; that
is,

Ai = Ad + Ai., (3.17)

Bi = Bd + Biw. (3.18)

From Eqs. (2.10), (2.11), and (3.13),

AVd = -10-6m(X)(P/T'), (3.19)

Bd = -4.6150 X 10- 6m,(X). (3.20)

Similarly, the water-vapor contributions are

Aiw = 10-6Q-1.3590- 0 6(X - 1)H - [0.61350-083

+ 0.59490-043( - 1)]H-2, (3.21)
Bi = 10-6[957 - 9280 4 (X - 1)]H- + 3.747/(12449 -x2),

(3.22)

where

0 = T/273.16K, (3.23)

H = 1.030il - 19.8x2 + 8.2X4
-1.7X 8 . (3.24)

C. Radio Region (Wavelengths Greater Than 3 mm)
For radio wavelengths from infinity down to roughly 3 mm,
the total instantaneous refractivity is the sum of dry-air
contributions (rd) and water-vapor resonances in the infra-
red (rw),

106(h - 1) = rd + rw, (3.25)

where the subscript r refers to radio waves. Hill et al.,23 who
referred to Boudouris2 4 for the values, of the coefficients,
gave

hrd = 77 .6 (P -)/t,

Frw = 72.0(e/t) + 0.375 X 10 6 (e/t2).

(3.26)

(3.27)

Notice that these coefficients are identical to those recom-
mended by Bean and Dutton.' 5 Using Eq. (3.8) as before,
we convert Eqs. (3.26) and (3.27) into

Frd = 77.6(p/t) - 358q,

hrw = (332 + 1.73 X 106/F)4.

(3.28)

(3.29)

Thus A and B again have both air-dry (Ard and Brd) and
water-vapor (Arw and Brw) contributions. From Eqs. (2.10),
(2.11), (3.28), and (3.29) we find that these are

Ard = -77.6 X 106(P/T'),

Brd = -358 X 10 6,

Arw = -1.73(Q/T2),

Brw = 332 X 1076 + 1.73/T.

Hence

Ar = -(77.6 x i0- 6P + 1.73Q)/T2,
Br = -26 X 10-6 + 1.73/T,

where for all practical purposes

Br = 1.73/T.

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

Note that the refractive index for ratio waves is nondisper-
sive: it has no dependence on wavelength [see Eqs. (3.26)
and (3.27)]. The Ar and Br values are therefore also inde-
pendent of the wavelength.

D. Near-Millimeter Region (Wavelengths from 0.3 to 3
mm)
Specifying the refractivity is more difficult for the near-
millimeter region than for the preceding three regions be-
cause it results from contributions from three sources: (1)
the nondispersive radio refractivity (rd and Ftrw), (2) water-
vapor resonances at wavelengths of <0.3 mm (Fmwi), and (3)
water-vapor resonances at wavelengths of >0.3 mm (tmw)'2)6
That is, for wavelengths between 0.3 and 3 mm (or frequen-
cies between 100 and 1000 GHz), the instantaneous refrac-
tivity is

106 (Ftm-1) = rd + d, + l + mW2. (3.37)

Hill26 evaluated the Fmwi and mw2 terms, and although
the nmw2 term requires a line-by-line summation of the reso-
nances and consequently does not have simple analytical
form, he did derive an analytical approximation for nmw,:

4

Fmwi = q a aj(296/F)aj[ - j(296/)](0.303/X)2j. (3.38)
1=i

Table 1 gives the constants aj, a, and fj; all quantities in Eq.
(3.38) are, as usual, in mks units except the wavelength X,
which must be in millimeters.

For the sake of an analytic solution, I will ignore the Fmw2
contribution to Eq. (3.37). This, of course, means that I am
no longer modeling the refractivity accurately throughout

Table 1. The Coefficients in Eq. (3.38)
j aj aj 0j

1 1.382221 X 103 1.650000 0.1993324
2 -0.2135129 X 103 0.1619430 3.353494
3 -0.1485997 X 103 0.1782352 3.100942
4 -0.1088790 X 103 0.1918662 3.004944
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the near-millimeter region. In particular, around the reso-
nances at 0.303, 0.399, and 0.538 mm (988, 752, and 557

GHz),2627 the abbreviated model is not good. However, it

should be accurate to +10% in the window regions 0.31-0.34
mm (880-970 GHz), 0.42-0.44 mm (680-720 GHz), and 0.83-
3 mm (100-360 GHz). These windows seem to be where

most current millimeter-wavelength turbulence measure-
ments are being made.27 -29

Because of the three terms remaining in Eq. (3.37), the
millimeter-wavelength A and B values each have three

terms:

Am = Ard + Arw + Amwj, (3.39)

Bm Brd + Brw + Bmwl. (3.40)

Ard, Arw, Brd, and Brw are the nondispersive radio-wave con-

tributions evaluated in Subsection 3.C, Eqs. (3.34) and
(3.36). Ai and Bmw, are derived from Eqs. (2.10), (2.11),
and (3.38):

4

Amwi = 10- 6(Q/T) E a1(296/T)aj(0.303/X)2i
j=1

X [-aj + j(296/T)(1 + a)], (3.41)

stability parameter r = z/L. For example, the vertical gradi-
ents of average wind speed U(z), potential temperature T(z),
and absolute humidity Q(z) have been found to satisfy
Monin-Obukhov similarity35 -38:

Oz KZ

Oz KZ

dz KZ

(4.5)

(4.6)

(4.7)

The functions Om, Okh, and 'bw must be found experimentally.
Although there is no consensus yet on their forms, the mea-
surements seem to be converging toward the functions used
by Large and Pond3440 :

for unstable conditions (D < 0)

Om(¢) = (1 -160)1/4,

OhM = Ow(t) = (-160-1/2;

for stable conditions ( > 0)

(PGm() = OghM = gw(t) = + 7.

(4.8)

(4.9)

(4.10)

Bmwj = 10-6 E aj(296/T)aj[l - 3j(296/T)](0.303/X)2j.
j=1

4. MONIN-OBUKHOV SIMILARITY OF C,2

Over a horizontally homogeneous surface in steady-state
conditions, an atmospheric surface layer exists up to heights

of 10-50 m, depending on the height of the planetary bound-
ary layer. In the surface layer the vertical fluxes of momen-
tum (-u1), sensible heat (W), and the latent heat (wq) are
constant with height. Consequently, it is possible to define

velocity (u, the friction velocity), temperature (t.), and
humidity (q*) scales that are also constant with height:

U 2 = -UW, (4.1)

U*t* =-A,

u*q* = -q.

(4.2)

(4.3)

Here u and w are turbulent fluctuations in the longitudinal
and vertical velocities, defined as t and q were in Eqs. (2.4)

and (2.5). These velocity, temperature, and humidity
scales, in turn, yield a length scale, the Obukhov length L,30
that is also constant with height:

= ( * + 0 TQ ) (4.4)

Here y is the acceleration of gravity, K is von Kdrmn's
constant (0.4), T and Q are representative values of the
temperature and the absolute humidity in the surface layer,
and p is the density of moist air.

According to Monin-Obukhov similarity theory,31-34 any

surface-layer meteorological quantity, when properly scaled
with u*, t*, q*, L, the measurement height z, and the buoy-

ancy parameter y/T, should be a universal function of the

Paulson4 l showed how to integrate Eqs. (4.5)-(4.7) with
the empirical functions [Eqs. (4.8)-(4.10)] to get expressions

.42) for the profiles of wind speed, temperature, and humidity:

U(z) = (U*/K)[ln(z/zo) - 4m(D)]

T(z) = T, + (t,/K)[ln(Z/ZT) - k(D],

Q(z) = Q, + (q./K)[ln(z/zQ) - NO]-

(4.11)

(4.12)

(4.13)

In these expressions, z is the familiar roughness length for
wind speed; ZT and zQ are the roughness lengths for tempera-
ture and humidity, the so-called scalar roughness lengths.
z0 is the height at which the semilogarithmic wind-speed
profile extrapolates to U = 0. Similarly, ZT and zQ are the
heights at which the semilogarithmic temperature and hu-
midity profiles extrapolate to their surface values, T, and Q,
respectively. For unstable conditions (¢ < 0)

= 2 ln[(1 + x)/2] + ln[(1 + x2)/2] - arctan(x) + 7r/2,

NO = 2 ln[(1 + x2)/2],

where

x = (1 - 16¢)1/4.

For stable conditions (D i 0)

At= th() = 7r.

(4.14)

(4.15)

(4.16)

(4.17)

Other quantities also yield to similarity arguments. For
example, Wyngaard et al.42 showed that the structure pa-
rameter for temperature, Ct2, which is defined as Cn2 in Eq.
(1.1) or Eq. (1.3), should have a universal form when proper-

ly scaled. They obtained

z23ct2

9 bt(0),
(4.18)
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where the similarity function that was given by Wyngaard33
but was modified to reflect a value of 0.4 for the von Karmdn
constant is

gt(t) = 4.9(1 - 6.1')-2/3 for r < 0

0qNqe711' = 0.249C '

fl"NnE- 1
13 = 0.249C 2

ItqNtqE-' 1 3 = 0.249Ctq ,(4.19a)

= 4.9(1 + 2.2'/3) for v ' 0.

Fairall et al.43 and Kohsiek16 extended these arguments to
the humidity structure parameter Cq

2 and to the tempera-
ture-humidity structure parameter Ctq, obtaining

z2/3cq2
q2 9gqt), (4.20)

2/3c
t _ = gtq(v) (4.21)
t*q*

These similarity relations suggest that C also exhibits
Monin-Obukhov similarity. From Eqs. (1.1) and (2.9) we
see that

C,2 = A2Ct2 + 2ABCtq + B2Cq2. (4.22)

Also, because from Eqs. (2.9), (4.2), and (4.3) we can write

wn = Awt + Bwq, (4.23)

it is possible to define a refractive-index scale n* that is
similar to the temperature and humidity scales,

n* = At* + Bq*. (4.24)

Thus we would expect from similarity theory that
Z2/3cn2

2 gn(M- (4.25)

There have, however, been no experimental attempts to
verify Eq. (4.25) at wavelengths other than in the visible or
near-infrared region, where C 2 is virtually A2Ct2. On the
basis of Eq. (4.22), we can nevertheless speculate on how C2
will behave at infrared, near-millimeter, and radio wave-
lengths, since we know A and B at these wavelengths and
have some information on the behavior of Cq2 and Ctq.

The variance budgets for temperature, humidity, and re-
fractive index and the temperature-humidity covariance
budget have virtually identical forms44:

2u*t*"(bh(t) = Nt, (4.26a)
KZ

2u q* 2OhM;)(.2b
= Nq, (4.26b)

KZ

2u*n* 2Oh(M = Nn, ~~~(4.26c)
KZ

2u*t*q*0hM = Ntq, (4.26d)
KZ

where Nt, Nq, Nn and Ntq are the respective dissipation rates.
Note that in writing Eqs. (4.26), I ignored the vertical turbu-
lent transport term in each equation; this makes the equality
in each accurate only to within 10%.44

The scalar dissipation rates are related to the structure
parameters by

#tNte 1/3 = 0.249Cc', (4.27a)

where is the dissipation rate of turbulent kinetic energy,
and the Ol's are the Kolmogorov constants. The best experi-
mental data have not established any significant difference
among the 3 values; I therefore use ft = q = On = fltq = =
.4.44

The turbulent kinetic-energy dissipation rate also exhib-
its Monin-Obukhov similarity:

(4.28)Z = u*' 0,G),
KZ

where 'be has been found to be4 5-4 8

(e) = [ + 0.46(-)"2/3]3/ for - 2 < < 0 (4.29a)

= [1 + 2.3D/5]3/2 for 0 < D 2. (4.29b)

Again, I have modified the constants (i.e., 0.46 and 2.3) to
reflect a von Kdrmdn constant of 0.4.

From Eqs. (4.27)-(4.29), we see that each of Eqs. (4.26)
reduces to the same form,

z2/3C 2 z 2 /3Cq2 Z2/Cn 2- Z2/ 3Ctq

t 2 q*2 n 2 t*q*
2 f0h() 5.920h(t)

0.249K2/3, ( -)1/3 0' (v)1/3 - 5
(4.30)

where the subscript b indicates that the function is derived
from the budget equations. Panofsky and Dutton34 derived
virtually the same form for Ct2.

One shortcoming of gb is that it does not have the proper z
dependence at large jr. Equation (4.30) shows gb Z-5/6 at
large - and gb Z7/10 at large , while the accepted depen-
dences are g - z-2/3 and g z2/3, respectively.33 This incon-
sistency, however, is not an indictment of the theoretical
steps that led to Eq. (4.30) but rather is evidence that 'be
needs to be investigated further for large 11 values. For
example, if

0,G) = ( - 3-)1/2 for 0

= 1 + 6 for 0,

(4.31a)

(4.31b)

relations similar to Eqs. (4.29) for their region of validity, -2
< • S 2, then g would have the theoretically correct z
dependence at large 11. Notice that Eq. (4.31b) is the pro-
duction-equals-dissipation form of the turbulent kinetic-
energy budget that Large and Pond39 used.

In Fig. 1, Wyngaard's33 structure parameter function [Eq.
(4.19)] and the budget-based function [Eq. (4.30)] are plot-
ted with Eqs. (4.9) and (4.10) for Obh and with Eqs. (4.29) for
0e. Kohsiek'6 also found z2"3Ct2/t*2, z2/3Cq2/q*2, and z2/3Ctq/
t*q* experimentally for < -0.2; Fig. 1 shows his result for
temperature:

tW2 = 1.21(_-)'2/3 for < -0.02. (4.32)

Davidson et al.49 corroborated Wyngaard's33 expression
for gt, Eqs. (4.19), with Ct2 data in the interval -20 < < 1,
and Kunkel et al.50 corroborated it in the interval -20 < 

(4.27b)

(4.27c)

(4.27d)
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100

10

g

0.1 -
-10 - 1 - 0.1 - 0.01 0.001 0.01 0.1 1 10

z/L

Fig. 1. The nondimensional structure parameter g(r) according to
Wyngaard33 [Eqs. (4.19)]; derived from the scalar variance budget,
[Eq. (4.29) with Eqs. (4.9) and (4.10) for Oh and with Eq. (4.30) for
0J]; and as found experimentally by Kohsiek' 6 for Ct2 [Eq. (4.32)].

< -0.1; but their data and those on which Wyngaard et al.42
originally based Eqs. (4.19) are too scattered to rule out the
possibility that Eq. (4.30) may also be a correct model for Ct2,
at least. Panofsky and Dutton34 reached this same conclu-
sion. Consequently, both Eqs. (4.19) and Eq. (4.30) are
reasonable models for -10 • r < 1, the stability range where
most of the C' data have been collected.

The result obtained by Kohsiek'6 [Eq. (4.32)] is therefore
suspect. As Fig. 1 shows, he found the proper dependence
on Pat large - that is, (_)-213, but this dependence contin-
ued up to r = -0.02, whereas the Wyngaard and budget
results flatten out much sooner. Kohsiek's results for Cq2

and Ctq also behave as in Eq. (4.32) but with different multi-
plicative constants for each. Equation (4.30), however,
shows that these structure functions, too, should break from
the (-)-2/3 slope much sooner than Kohsiek found. I spec-
ulate that perhaps his experimental site, Table Mountain,
which is near Boulder, Colorado, suffered from nonhomo-
geneity. Table Mountain is a mesa 3 km across that is
elevated roughly 50 m above the surrounding terrain. It is
also just 3-4 miles (approximately 4-6 km), generally down-
wind, from the foothills of the Colorado Front Range. Al-
though the top of the mesa, where Kohsiek made his mea-
surements, is fairly smooth and level, the precipitous sides,
the proximity of the mountains, and the comparison of his
results with others (Fig. 1) lead me to believe either that his
measurements do not represent horizontally homogeneous
conditions or that at his site the vertical transport terms that
I ignored in Eqs. (4.26) were not small, as is commonly
assumed. 4 4,5

In summary, the Ct2 measurements of Wyngaard et al.,42

Davidson et al.,49 and Kunkel et al.50 agree that Eqs. (4.19)
are an accurate model for z2/3Ct2/t*2 but are too scattered for
us to reject Eq. (4.30) as an equally viable model. Therefore,
because the q and n variance budgets and the t-q covariance
budget all also lead to Eq. (4.30), it is reasonable to conclude
that

&M = gq ) = gtq( ) = gn(D )- ( ) (4.33)

where g is given by Eqs. (4.19). Notice that if gt(G) = gq(G) =

gtq(G) = g(v), then also gn(0) = g(r) by virtue of Eq. (4.22). I
therefore take Eq. (4.25) as an accurate model for Cn2 in the
atmospheric surface layer.

5. ESTIMATING C 2 FROM THE TURBULENT
FLUXES

From Eq. (4.26),

(5.1)

Cn 2 is therefore related to the turbulent surface fluxes of
momentum (u*2) and sensible (-u*t*) and latent (-u*q*)
heat by virtue of Eq. (4.24). Consequently, with measure-
ments of the surface fluxes and of ambient conditions
(namely, P, T, and Q needed to find A, B, and z/L), we can
estimate Cn' at an arbitrary height z within the atmospheric
surface layer.

It may, however, be unnecessary to know both t* and q* to
make an accurate estimate of n*. We can rewrite Eq. (4.24)
as

(5.2)n =1 + Bq 
At* At*

Next we define the Bowen ratio Bo, which is the ratio of
sensible heat flux to latent heat flux:

(5.3)-PC pu*t* PCp X X*=t Bo - - c* Kq=-Lsu~q* L q Kq*

where cp is the specific heat of air at constant pressure, L is
the latent heat of sublimation of ice, and K is a constant,
near 2100 m3 K kg-', for a given set of ambient conditions.
Substituting Eq. (5.3) into Eq. (5.2) yields

7X* =1+ B
At* KA Bo

(5.4)

This equation indicates whether t* or q* is the dominant
term in Eq. (4.24). Clearly, the result depends on the elec-
tromagnetic wavelength, i.e., the A and B values, and on the
Bowen ratio. If n*/At* is near 1, then n* depends negligibly
on q*; but if In*/At*l is large, then q* rather than t* makes
the dominant contribution to n*.

Figure 2 shows plots of n*/At* as a function of the Bowen
ratio for four electromagnetic wavelengths. The A and B
values used in Eq. (5.4) were computed from the equations
developed in Section 3. From the figure we see that when
IBol is large, i.e., when the sensible heat flux is dominant, n*/
At* is near 1 for all wavelengths; the t* term is thus the
dominant contributor in Eq. (4.24). On the other hand,
when IBoI is small and the latent heat flux is dominant, In*/
At*I is large for all wavelengths; the q* term is then the
dominant contributor in Eq. (4.24). In the midregions, for
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Fig. 2. Dependence of the refractive-index scale on the tempera-
ture and humidity scales for four electromagnetic wavelengths. At-
mospheric conditions are typical for a snow or sea ice surface: P =
1000 hPa, T = -10 0 C, Q = 1.93 X 10-3 kg m-3 (i.e., relative humidity
of 90%). A wavelength of 337 Am corresponds to a frequency of 890
GHz. Notice that the n*/At* axis changes scale at +10.

IBol values between 0.1 and 1, t* dominates for visible and
infrared wavelengths, while q dominates for near-millime-
ter and radio wavelengths. Thus we cannot say unequivocal-
ly that for a given wavelength either temperature or humid-
ity will dominate the refractive-index fluctuations: The
partitioning also depends on the Bowen ratio.

Because the Bowen ratio is so important for interpreting
Fig. 2 and for many figures to follow, it is useful to review a
few Bo measurements over snow and sea ice. Measure-
ments of turbulent surface fluxes over snow generally show
the Bowen ratio to be negative: the snow gains sensible heat
from the air but loses latent heat by sublimation. Hicks and
Martin52 found Bo between -1 and -0.2 in four measure-
ments over a snow surface near the melting point. At lower
air temperatures, Yelagina et al.53 found Bo to be typically
-5 to -1 for many measurements over snow, and Andreas9
found it to be -3 to -1. In stationary atmospheric condi-
tions, McKay and Thurtell 5 4 also observed this general
range, from -4 to -1, but measured Bowen ratios between 1
and 4 during warm-air advection that fostered downward
surface fluxes of both sensible and latent heat. Over sea ice
the Bowen ratio tends to be positive because of the oceanic
heat transferred through the ice. Over compact, snow-cov-
ered Arctic sea ice, Thorpe et al.55 measured Bo generally
between 1 and 20. Over Antarctic sea ice with roughly 10%
open water present, Andreas and Makshtas56 obtained Bo
values around 1. In summary, values of the Bowen ratio
over snow-covered ground and over sea ice are commonly in
the vicinities of -1 and 1, respectively.

To evaluate how good Eq. (5.1) really is for estimating C2,
we must know how sensitive C is to the required input
measurements z, u, t, and q Using Eq. (4.24) in Eq.
(5.1), we find that

C 2 = z-23g( )(A2t*2 + 2ABt q* + B2q 2) (5.5)

Thus C2 is a known function of z, , t, and q; but is, in
turn, a known function of z, u*, t, and q [see Eq. (4.4)].
Notice that I am ignoring the weak dependence of A, B, and
L on P T and Q because these are assumed to be virtually

constant over the time scales of interest. On identifying the
independent variables, we can evaluate how sensitive a C2
estimate is to them.

According to Eq. (5.5), a differential change in z, , t, or
q~will result in a differential change in C' that obeys

aC= ' aC' aCn +C'dCn2'= dz + d~+ 'dt* + 'dq*,.

Or a~ at*, aq*
(5.6)

However, because ¢ is a function of the independent vari-
ables z, u*, t, and q*,

d =-dz + d du + dt + dq*.Or au* at* * q (5.7)

Substituting this expression into Eq. (5.6) yields a sensitiv-
ity equation in terms of the true independent variables,

dC 2 z [Cn' + C dz + 2 dC' 1 du*
Cn2 Cn 2 L aZ a z z Cn2L daOu*J U*

t FCn 2 aCn2 dal dt*
Cn 2L at* aD at*p t*

+ q* [aCn2 + aC 2 aD 1 dq*
C'2L q* OD q* q*

(5.8)

Notice that I have divided through by Cn2 to get the relative
change dC,2/C,2 and have formed similar relative changes of
the independent variables on the right-hand side of Eq.
(5.8). These relative changes can also be interpreted as the
relative uncertainties in the measurements of z, u,, t, and
q. and in the resulting estimate of Ci,2. Therefore the coeffi-
cients multiplying these uncertainties predict how sensitive
the estimated quantity C is to uncertainties in the mea-
sured quantities. They are sensitivity coefficients.

Letting S denote a sensitivity coefficient, I rewrite Eq.
(5.8) as

dC2
___= Sz(dz/z) + S(du./u.)

+ St (dt,/t*) + Sq (dq*/q*). (5.9)

Defining from Eq. (4.4) as = z/L, and using the Bowen
ratio [Eq. (5.3)] to separate into contributions owing to
fluctuations in temperature (T) and humidity (Q),31 we
have

~ = T + ) = Zt, I + 0.61T 1
v T +SQlU T p + 0.61 K BoJ

T 1+0.61T 1= ~T I+ +O6 -BO

(5.10)

(5.11)

With these and with Eqs. (4.19) substituted for g(v) in Eq.
(5.5), we can find the sensitivity coefficients in Eqs. (5.8) and
(5.9):

S. = Z adC" +aC"2 d¢
C'2 Z dz d zJ

= 2 1+ 61_

=2 -1 + 2.2k"'
3 1 + 2.2&/

(5.12a)

for r < 0 (5.12b)

for > ; (5.12c)
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Su* U,, aCn 2 t 0
UFCn2 a a u*}

= - (4/3) (6. 1)
1 - 6.1¢

= -(4/3)(2.2) c/
1 + 2.2"/3

for • < 0,

for t > 0;

* Cn2\ 2at aD at*/

2 (2/3)(6.1)T= ~+
1 + (B/KABo) 1 - 6.1¢

2 (2/3)(2.2) RTr"= ~+
1 + (B/KABo) 1 + 2.2!2/3

_q* Cn+ -\Cn 2

sq Cn2 aq* O Oq* /

2B/KABo (2 /3) (6 .1) RQ= ~+
1 + (B/KABo) 1 - 6.1D

2B/KABo (2/3)(2.2)Qr'= ~+
1 + (B/KABo) 1 + 2.W/3

In another publication, 5 7 I interpr(
sensitivity coefficients defined as in Eq.
sensitivity coefficient S is large (posi
magnifies the relative uncertainty in t
shows that the Cn2 estimate has a large
near zero, on the other hand, the predic
ally independent of the measured quan
cluded that the optimum value of S is

Figure 3 shows the sensitivity coeff]
functions of stability. From Eqs. (5
evident that these are both independe
netic wavelength, and Figure 3 shows
large enough to cause problems in e'

1.5
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z/L

Fig. 3. The sensitivity coefficients S, and
(5.12) and (5.13), respectively.

that, in the figure, Su* is near zero for z/L near zero, as it
(5.13a) must be, since g(r) becomes independent of r and thus of u*

near zero. The plot of Sz makes an interesting point. At
large -t, S, approaches -4/3; near r = 0, Sz is near -2/3; and

(5.13b) at large , Sz approaches 0. From Eqs. (5.1) and (4.19) we
see that these sensitivity values are precisely the exponents

(5.13c) of the z dependence of Cn2 at these limits. Thus, if X is an
independent variable and Y is a dependent variable, the
sensitivity coefficient S relates them by Y K Xs for small

(5.14a) changes in X. This is true not only of Sz but of all the
sensitivity coefficients that I will discuss.

Equations (5.14) and (5.15) show that St* and Sq* are

for < •0 (5.14b) much more complex than S, and Su*; St* and Sq* depend not
only on the stability but also on the Bowen ratio and the

3 electromagnetic wavelength (through A and B). Figures 4-7
show St* and Sq* for four electromagnetic wavelengths typi-
cal of the visible and near-infrared region (0.55 gim), the

for r ' 0; (5.14c) infrared window (10.6 ,im), the near-millimeter region (337
Aim = 890 GHz), and the radio region. The curves at the

(5.15a) three stabilities shown in each figure, v = -1, 0, 1, give a
nearly inclusive envelope for the range of the sensitivity
coefficients.

for r < 0 (5.15b) The strong dependence of the coefficients on the Bowen
for * • 0 (5.15b) ratio in Figs. 4-7 is startling. In Eqs. (5.14b), (5.14c),

(5.15b), and (5.15c), the sensitivity coefficients at neutral
stability (G = 0) are given by the first term on the right-hand
side of each equation. Thus, at neutral stability, each coef-

for r ' 0. (5.15c) ficient has a simple pole at Bo = -BIKA. Here each sensi-
tivity coefficient becomes infinite, and it is impossible to

eted the meaning of estimate C,' accurately. The second term on the right-hand
1(5.9). In brief, if the side of each equation contains the stability dependence.
itive or negative), it Each of these terms has a simple pole at Bo = -0.61T/[K(p +
he measurement and 0.61Q)] because of Eqs. (5.10) and (5.11). Here, too, it is
uncertainty. If S is impossible to estimate CN2. Clearly, from Figs. 4-7, the
ted quantity is virtu- stability does not have a large effect on the sensitivity coeffi-
tity. I therefore con- cients. The neutral-stability contribution sets the trend
near 1 or -1. and the general level of the coefficients. Introducing the
cients S, and Su* as stability dependence does, however, produce a second pole
.12) and (5.13) it is in each coefficient.
nt of the electromag- The locations of the poles may not be detrimental for
s that neither is ever estimating C2 over snow or sea ice at visible and infrared
stimating Ca2. Note wavelengths. Figures 4 and 5 show that the poles have the

greatest influence for Bowen ratios between -0.02 and
-0.06. In my review I found few measurements that yielded
Bowen ratios in this region. For near-millimeter and radio-

wavelength estimates of Cn2 (Figs. 6 and 7), however, the
poles show large effects for Bowen ratios between 2 and 4,
Bowen ratios that are commonly encountered over sea ice.

It is worthwhile to demonstrate the use of the sensitivity
coefficients shown in Figs. 3-7. Suppose that we have mea-
surements of z, u*, t*, and q* and want to estimate C' for

N o both visible and near-millimeter wavelengths. Assume that
N / the relative uncertainty in z is +2% (i.e., dz/z = +0.02) and

that the relative uncertainties in the flux quantities u*, t*,
and q* are typical of what is possible with an eddy correla-

N _ tion measurement of these [see Eqs. (4.1)-(4.3)], du*/u* =
±0.1 and dt*/t* = dq*/q* = ±0.2. Equation (5.5) yields the

I , I I Cn' estimates, but we want to know the uncertainty in those
.01 0.1 1 10 estimates. That uncertainty can be computed from Eq.

(5.9). Suppose that the u*, t*, and q* values yield Bo -1
S, computed from Eqs. and zIL -0.1. From Fig. 3 we therefore obtain S, = 0.9

and Su* = 0.5. For C' in the visible region, Fig. 4 gives St*

-r -- r l I- I I I I I

IN

\\Su

- '- ~~~- - -- 

Sl
I I I I I I I I I
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Fig. 4. The sensitivity coefficients (a) St and (b) Sq for an electro-
magnetic wavelength of 0.55 um. The ambient conditions are P =
1000 hPa, T = -10°C, Q = 1.93 X 10-3 (i.e., a relative humidity of
90%). Notice that the ordinate changes scale at 5.
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Fig. 5. As in Fig. 4 but for a wavelength of 10.6 ,um.
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Fig. 6. As in Fig. 4 but for a wavelength of 337 um (a frequency of
890 GHz).
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Fig. 7. As in Fig. 4 but for radio wavelengths.
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2 and Sq* = 0. Hence, at 0.55 gim, dCn2/Cn2 = (±2%)(0.9)

+ (±10%) (0.5) + (+20%)(2) + (±20%) (0) = ±47%, the uncer-
tainty in the C,2 estimate. For Cn2 at 337 gim, Fig. 6 gives St*

0.5 and Sq*- 1.5. Thus (2%)(0.9) + (10%)(0.5) +
(±20%)(0.5) + (±20%)(1.5) = ±47% is also the uncertainty in
this C,2 estimate. Clearly, our inability to measure the
turbulent fluxes with precision leads to a fairly large uncer-
tainty in the C,2 estimate.

6. ESTIMATING Gn2 FROM ROUTINE
METEOROLOGICAL OBSERVATIONS

Measuring the eddy correlations uW, wt, and wq and thereby
obtaining u, t, and q* is not easy. Measuring velocity,
temperature, and humidity spectra in the inertial and iner-
tial-convective subranges and then obtaining u, t*, and q*
through the inertial-dissipation method58 is somewhat easi-
er but still requires sophisticated, fast-responding sensors.
The way to obtain u*, t, and q* that is instrumentally and
computationaly simplest is to measure the average wind
speed, temperature, and absolute humidity at a reference
height h(Uh, Th, and Qh, respectively) and the surface tem-
perature and humidity, T, and Q,, and then to solve Eqs.
(4.11)-(4.13) iteratively for u*, t, q*, and L.56 That method
of obtaining u*, t*, and q* and the effects of uncertainties in
the measured quantities, Uh, AT = T, - Th, and AQ = Q -

Qh, on the Cn2 estimate are the subjects of this section.
Equations (4.4) and (4.11)-(4.17) contain the method of

estimating u*, t*, and q* from Uh, AT, and AQ. The solu-
tion is iterative. We first assume neutral stability (h/L = 0)
and then compute initial estimates of u*, t, q*. With these,
we compute L, utin, and A'h; we then refit the data to compute
new values of u*, t, and q*. We continue until the values
converge, which usually takes fewer than five iterations.
With these values of u, t*, q*, and L, it is simple to find C,2
at an arbitrary height and wavelength from Eq. (5.5).

On inspecting Eqs. (4.11)-(4.13), it is clear that we also
need to know zo, ZT, and ZQ to make the above computations.
The roughness length zo has a one-to-one relationship with
the drag coefficient at neutral stability at a reference height
h:

CDNh = [K/ln(h/z)]' (6.1)

Banke et al.59 found that over snow-covered sea ice the
neutral-stability drag coefficient at 10 m can be parameter-
ized as

10 3CDN10 = 1.10 + 0.072t, (6.2)

where t is the root-mean-square (rms) surface roughness in
centimeters found through a leveling survey. is usually
between 1 and 12 cm. Shirasawa 60 reported a similar in-
crease in the drag coefficient with the roughness of the sea
ice but was not as successful as Banke et al. in parameteriz-
ing it. Kondo and Yamazawa6 l likewise reported that the
drag coefficient over a flat, snow-covered field increased
with increasing roughness of the snow surface. I therefore
hypothesized that Eq. (6.2) is an adequate model for both
snow-covered sea ice and snow-covered ground. 62 On mea-
suring, specifying, or guessing , we can thus combine Eqs.
(6.1) and (6.2) to find z0.

I also developed a theoretical model to estimate ZT/zo and
zQ/zo from the roughness Reynolds number

Table 2. Values of the Coefficients in the Polynomials
[Eq. (6.4)] That Predict z/zo for Temperature

(i.e., ZT/Zo) and Water Vapor (i.e., zQ/zo)

Coefficient R* ,0.135 0.135<R *<2.5 2.5 SR*• S1000

Temperature
bo 1.250 0.149 0.317
b, - -0.550 -0.565
b2 - - -0.183

Water Vapor
bo 1.610 0.351 0.396
b, - -0.628 -0.512
b2 - - -0.180

R* = u*Z0/V,

where v is the kinetic viscosity of air.62

the model results have the form

(6.3)

Polynomials fitted to

ln(z,/zo) = bo + b, In R* + b2(ln R*)2, (6.4)

where z, is either ZT or ZQ. Table 2 gives the coefficients bo,
bl, and b2-

As in Section 5, the next question is, How does the uncer-
tainty in the C,2 estimate depend on the uncertainties in the
measured quantities z, Uh, AT, and AQ?

The answer to this question is derived from Eqs. (4.11)-
(4.13) and from Eq. (5.8). To simplify the sensitivity analy-
sis, I assume that the height z at which the Cn2 estimate is
desired is also the reference height h; that is, z = h and r =
h/L. From Eqs. (4.11)-(4.13) and (6.1),

Uh
= CDNh-112 - K 1 'm(v)

- -AT

(6.5)

CDNh /' -K [ln(zT/zo) + Ah(¢)]

-AQ

q* CDNh11' - K'[ln(zQ/zo) + Ah(¢)]

(6.6)

(6.7)

In the sensitivity equation [Eq. (5.8)], we require du*/u*,
dt*/t*, and dq*/dq*, which, from the above equations, are

(6.8)du* dUh + (KumlaD) dD

U* Uh KCDNh Am r

dt* = dAT + M(hth/O ) 
t* AT KCDNh11 -ln(ZT/zo) - h 

dq* dAQ + W(8uh/W) a
q* AQ KCDNh' -ln(ZQ/Zo) - 'Ph

(6.9)

(6.10)

A complication here is that d/~ depends on u*, t*, and q*,
which, in turn, depend on the measured quantities Uh, AT,
and AQ. To get around this, we substitute Eqs. (6.8)-(6.10)
into Eq. (5.7) and solve for dA/r. The result is

we= D-1 dz

where

dUh T dAT Q dAQ2 + +- I )
Uh ~ AT ~ AQ ~
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D-1I 2v(afm/da~) tWhld)
KCDNh"' - 'm KCDNh-"' - ln(zT/zO) - 'Ph

(6.12)

Here I have ignored the small difference between zT and zQ
and used ZT for both.

The next step is evluating O'Pm/Oa and a'h/Oa. The 
functions, defined by Eqs. (4.14)-(4.17), and the correspond-
ing 0 functions, Eqs. (4.8)-(4.10), are related by 4'

(6.13)() = | 1 0(W)dr

Therefore, by Leibnitz's rule,

O'P1-¢()

Using this result in Eq. (6.12) yields

D = 1+ 2[1 -0.(A)]

KCDNh1 -pM(t)

I h~
KCDNh"' - ln(zT/zo) - h()

(6.14)

(6.15) -1

Finally, substituting Eqs. (6.11) and (6.14) into each of
Eqs. (6.8)-(6.10) and substituting the resulting three equa-
tions into Eq. (5.8) gives a sensitivity equation for C that
depends on the measurements z, Uh, AT, and AQ:

dC2 S. dz dUh dAT dAQ
C2 = y z+SUU +SAT +SAQAQ

(6.16)

On defining

F = D-1 [1 Skm(")] u,
tKCDNh" -'P-)

[1- h()][2 - '/2 S I

KCDNh /' - ln(zT/zO) - 'Ph(t J (6.17)

we see that these new sensitivity coefficients are related to
the sensitivity coefficients found in Section 5:

Szz = Sz + F,

Su = S- 2F,

SAT = St + (/)F,

SAQ = Sq + (Q/)F.

(6.18)

(6.19)

(6.20)

(6.21)

Figures 8-12 show plots of these sensitivity coefficients.
The F term in each of the above equations is a function of the
stability parameter . At v = O, F is zero, since cm(0) = h(O)
= 1. Therefore, at neutral stability, the sensitivity coeffi-
cients of the routine meteorological measurements are the
same as the flux-based sensitivity coefficients. Conse-
quently, the = 0 lines in Figs. 9-12 are the same as the v = 0
lines in Figs. 4-7.

Computing Sz, Su, SAT, and SAQ requires specifying CDNh.
In my computations I assumed a reference height of 10 m
and used CDN10 values of 1.172 X 10-3 and 1.964 X 10-3; from
Eq. (6.2) these correspond to rms surface roughnesses (Q) of 1
and 12 cm, respectively. The sensitivity coefficients, how-

ever, depended only weakly on these CDN10 values, even over
this maximum range of realistic values. Thus the figures
show only the CDN10 = 1.172 X 10-3 case.

The sensitivity coefficients also depend implicitly on Ulo,
because to specify ZT/ZO I had to estimate R. from Eq. (6.3).

-10 -1 -0.1 -0.01 0.001 0.01 0.1 1 10

z/L
Fig. 8. The sensitivity coefficients S~z and Su computed from Eqs.
(6.18) and (6.19). The reference height is 10 m, the wind speed
there is 5 m sec'1, and the neutral-stability drag coefficient refer-
enced to 10 m is 1.172 X 10-3 (i.e., = 1 cm). Notice that the
ordinate changes scale at ±2.
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m, and the 10-m neutral-stability drag coefficient is CDN10 = 1.172 X
10-3 (i.e., = 1 cm). The ambient conditions are P = 1000 hPa, T =
-10°C, Q = 1.93 X 10-3 kg m- 3 (i.e., relative humidity of 90%), and
U = 5 m sec- 1 . Notice that the ordinate changes scale at 5.
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Specifying CDN10 or t gives zo from Eqs. (6.1) and (6.2). To
find u I chose a U10 value and used this Zo value in Eq.
(4.11), assuming neutral stability. Again, Sn, Su, SAT, and
SAQ depend so weakly on U1o that I chose a typical midrange
value, U10 = 5 m sec-1, in preparing Figs. 8-12.

The sensitivity coefficients Sz, Su, S~z, and Su do not
depend on ambient temperature and humidity. The coeffi-
cients St., Sq*, SAT, and SAQ have such a weak dependence
on temperature and humidity that Figs. 5-8 and 9-12, which
are based on T = -10°C and Q = 1.93 X 10-3 kg m-3 (relative
humidity of 90%), represent most realistic conditions over
snow and sea ice.

According to Fig. 8, S,, and Su are reasonably well be-
haved for most stabilities. As with S,,* Su approaches 0 at
neutral stability, since the main impact of wind speed on an
estimate of C,2 is through the stability parameter z/L. For
z/L > 1, the magnitudes of both Su and Sz begin increasing.
Consequently, in this region, uncertainties in Uh or h could
be detrimental to the C02 estimates. Fortunately, z/L val-
ues of >2 are rare in the surface layer.

The three lines (D = -1, 0, 0.1) in Figs. 9-12 more or less
bracket the range of the sensitivity coefficients. As with the
St* and Sq* values, SAT and SAq each have a simple pole at Bo
= -B/KA for neutral stability. When we introduce stability
effects, both also have a simple pole at Bo = -0.61T/[K(p +
0.61Q)]. It is therefore impossible to estimate C02 accurate-
ly if the Bowen ratio is in the vicinity of the poles. We can
easily identify problematic data, since the Bowen ratio is
derived directly from the measured quantities by using Eqs.
(4.12), (4.13), and (5.3), assuming that ZT ZQ:
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Fig. 11. As in Fig. 9 but for a wavelength of 337 im (a frequency of
890 GHz).
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Bo = AT (6.22)

Despite the similarity of the values of St, and SAT and of
Sq* and SAQ, estimates of C02 based on Uh, AT, and AQ are
likely to be more uncertain than estimates based on u*, t*,
and q,. This is because the relative uncertainties in AT and
AQ may well be larger than for t and q Measuring the
temperature and the absolute humidity of the snow surface
is difficult because the measuring device often ruins the
integrity of the surface or otherwise disturbs its thermal
regime63 ; uncertainties in T and Q can therefore be large.
The small vertical temperature and humidity gradients that
usually exist over snow, especially over snow-covered sea ice,
exacerbate this problem. With small gradients, it would not
be unusual to have uncertainties in AT and AQ that are
nearly as large as their absolute values. I have developed a
noninvasive method of measuring the snow-surface tem-
perature that may minimize the uncertainty in this measure-
ment,6 3 but more research is necessary to ensure accurate T,
and Q measurements.

7. DISCUSSION

The methods that I have described for estimating C have
two primary uses. The first is for comparing values of C2
obtained directly from electro-optical instruments with val-
ues estimated from micrometeorological measurements,
with the objective of verifying elements of the theory con-
tained in Sections 4-6. The basic question here is, Can
point measurements be used to predict path-averaged quan-
tities? Davidson et al.14 used the methods that I have de-
scribed, with minor variations, to make such a comparison
with data collected over the ocean. Although the agreement
between their electro-optical and meteorological estimates
of C2 was encouraging, the data scatter was rather large.
Evidently, Davidson et al. did not realize that the accuracy
of their meteorologically derived C2 estimates depended on
the Bowen ratio, because they did not mention the range of
Bowen ratios encountered, nor did they provide enough in-
formation for me to estimate Bowen ratios. Although it is
unlikely that the scatter in their optical C2 values was due
to the Bowen ratio, since Bo is usually positive over the
ocean (see Figs. 4 and 9), I encourage experimentalists to
consider this source of uncertainty in future comparisons.

The second, probably broader, use of these methods for
estimating C2 is predicting C from routine meteorological
observations. 8 64 On the basis of such estimates we could
then prepare C climatologies for various locales and for
various meteorological conditions 8 for the purpose of evalu-
ating how electro-optical sensors would function in such
conditions. Again, though, if the Bowen ratio indicated by
the meteorological data [i.e., Eq. (5.3) or Eq. (6.22)] is near
one of the poles in Figs. 4-7 or 9-12, the uncertainty of the
associated C2 estimate may be prohibitively large.

Although I have concentrated on estimating C' over snow
and sea ice, there is nothing to preclude using my methods
over other horizontally homogeneous surfaces. In fact, the
development in Section 5 on estimating C from turbulent
fluxes applies to any surface. Only the sensitivity coeffi-
cients, which were computed for T = -10°C and Q = 1.93 X
10-3, specify the nature of the surface. In estimating C2

from routine meteorological observations (Section 6), the
only changes that are necessary for using my method over
other surfaces would be in estimating zo (or CDNh), ZT, and
ZQ. The equations that I give for these are valid only over
snow and snow-covered sea ice. Models for zo, ZT, and ZQ do,
however, exist for other surfaces. Liu et al.,65 for example,
developed a model for z/zo over the ocean and used Kon-
do's66 parameterization of the 10-m drag coefficient to find
zO. Brutsaert 6 7 formulated a model for z/zo over an arbi-
trary solid surface, and Garratt and Hicks68 formulated an-
other model for a variety of surfaces; for z here one could
consult Garratt's 6 9 review of drag coefficients measured over
various geophysical surfaces.

In estimating C2 from routine meteorological observa-
tions, I chose to base estimates on the temperature and
humidity differences between the reference height h and the
surface. It is, however, also possible to base C02 estimates on
the temperature and humidity differences betweent the two
heights h and h', where h' is above the surface and h > h'. A
sensitivity analysis of this estimation procedure and some
physical insight would show why my original method is bet-
ter. C would now also suffer from the additional uncer-
tainty in the measurement of h'. More importantly, though,
the relative uncertainties in the measured quantities AT' =
Th - Th and AQ' = Qh' - Qh would probably be larger than
for AT = T - Th and AQ = Q- Qh, since the largest
temperature and humidity gradients are in the immediate
vicinity of the surface. Thus, although the sensitivity coef-
ficients ST, and SAQ, would probably be smaller than SAT
and SQ, the larger relative uncertainties, dAT'/AT' and
dAQ'/AQ', would certainly nullify this benefit.

8. CONCLUSIONS

The fundamental equation on which most of my analysis
rests is Eq. (5.1):

(8.1)

with g(G) given by Eqs. (4.19). Although the validity of this
equation has been checked experimentally only indirectly
and only at visible wavelengths, much associated experimen-
tal and theoretical work argues in support of its accuracy.
One use for the methods of estimating C2 that I have dis-
cussed could therefore be finally to test Eq. (8.1) directly and
to do a careful analysis of the experimental uncertainties.

The derivation of a means of estimating these uncertain-
ties is one of the main results of this paper. Estimating C2
from the flux scales u*, t*, and q* requires only four equa-
tions, Eqs. (5.5), (4.19a), (4.19b), and (4.4). Estimating C2
from the routine meteorological data Uh, AT, and AQ re-
quires only a few additional equations, namely, Eqs. (6.5)-
(6.7) and some others. However, evaluating the uncertainty
in either estimate of C2 is much more difficult because of
the nonlinear dependence of C2 on the measured quantities.
My analysis shows that the sensitivity coefficients that pre-
dict the uncertainty in C2 are generally strong functions of
the Bowen ratio Bo. In nonneutral stability conditions, St,
Sq*, SAT, and SQ each become infinite at two values of Bo in
the interval [-10, 10]. In the vicinity of these singularities it
is impossible to estimate C2 accurately. My plots of the
sensitivity coefficients St*, Sq*, ST, and SAQ (Figs. 4-7 and
9-12) are thus important warnings to anyone who would try

Edgar L Andreas

C,,' = z-'1'n.1gm'



Edgar L Andreas494 J. Opt. Soc. Am. A/Vol. 5, No. 4/April 1988

to estimate Cn2 with arbitrary accuracy at an arbitrary Bow-
en ratio.

A second major result of this paper is my derivation of
analytic expressions in four useful wavelength regions for
the functions A(X, P, T, Q) and B(X, P, T, Q) that appear in
Eq. (2.9). Equations already existed for the visible (to near-
infrared) region (0.36-3 izn) and for radio wavelengths (>3
mm). I added equations for an infrared window (7.8-19 gim)
and for near-millimeter wavelengths (0.3-3 mm) and then
computed the sensitivity coefficients in each of the four
wavelength regions where scintillation and, consequently,
Cn2 are commonly measured.
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