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Abstract. The recent finding of an orange spectral feature
in OSIRIS/Odin spectra of the night airglow near 87 km has
raised interest in the origin of the emission. The feature was
positively identified as the chemiluminescent FeO∗ emission
where the iron is of meteoric origin. Since the meteorite
source of atomic metals in the mesosphere contains both iron
and nickel, with Ni being typically 6 % of Fe, it is expected
that faint emissions involving Ni should also be present in
the night airglow. The present study summarizes the lab-
oratory observations of chemiluminescent NiO∗ emissions
and includes a search for the NiO∗ signature in the night
airglow. A very faint previously unidentified “continuum”
extending longwave of 440 nm has been detected in the night
airglow spectra obtained with two space-borne limb viewing
instruments. Through a comparison with laboratory spectra
this continuum is identified as arising from the NiO∗ emis-
sion. The altitude profile of the new airglow emission has
also been measured. The similarity of the altitude profiles of
the FeO∗ and NiO∗ emissions also suggests the emission is
NiO as both can originate from reaction of the metal atoms
with mesospheric ozone. The observed NiO∗ to FeO∗ ratio
exhibits considerable variability; possible causes of this ob-
served variation are briefly discussed.

Correspondence to:E. J. Llewellyn
(edward.llewellyn@usask.ca)

1 Introduction

The terrestrial night airglow has been studied for more than
a century (e.g.Ångstr̈om, 1869). However, new emission
features are still being identified, an example being the FeO
“orange” bands that arise from the reaction between atomic
iron of meteoric origin with terrestrial ozone (Evans et al.,
2010). Known emission features continue to be investigated
and their spectral signatures more accurately determined;
such as the chemiluminescent emission of NO∗

2 that is pro-
duced in the NO + O reaction (Becker et al., 1972; Gattinger
et al., 2010). Extending these ongoing observations, it is ex-
pected that a chemiluminescent emission from NiO∗, which
also arises from the reaction of atomic nickel of meteoric ori-
gin (McNeil et al., 1998) with atmospheric ozone, should be
present in the airglow spectrum, albeit very faint.

At least two NiO∗ band systems are known to be present
in the visible spectral region, the NiO “blue” bands in the
500 nm region (Srdanov and Harris, 1988) and the “red”
36−

− X36− system that occurs in the 620 nm region
(Friedman-Hill and Field, 1992). Due to the complexity of
the spectra the determination of the molecular constants for
the upper electronic states is challenging and consequently
the definitive assignment of vibrational transitions remains
incomplete. Srdanov and Harris (1988) did publish a lab-
oratory spectrum of chemiluminescent NiO∗ over the 480
to 600 nm wavelength range and more recently Burgard et
al. (2006) obtained the spectrum over a much broader wave-
length range, although at much lower spectral resolution. In
the present study the NiO∗ spectra observed in the labora-
tory are summarized and discussed. In addition, a prelim-
inary spectral model of the NiO∗ emissions (Gattinger et
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al., 2011a) is employed primarily to investigate the probable
change in spectral shape when transferring the NiO∗ labora-
tory spectra, obtained at relatively high pressure, to the much
lower pressures associated with the mesopause region.

Night airglow spectra recorded by two limb-viewing
space-borne spectrographs on separate platforms are pre-
sented. The airglow spectra are corrected for atomic emis-
sions and for the well-known molecular emission systems,
mainly the Herzberg O2 bands in the near-ultraviolet and
blue regions, and the Meinel hydroxyl bands in the red spec-
tral region. The residual observed spectra are then separated
into NO∗

2, FeO∗ and NiO∗ components using a least squares
fitting routine and their temporal variations are explored.

2 Laboratory observations of the chemiluminescent
NiO∗ emission

The earliest observations of the NiO∗ emissions were
recorded by Rosen (1945) who identified numerous spectral
features and proposed a band classification scheme. Srdanov
and Harris (1988) applied high resolution spectroscopic tech-
niques to study the emissions in greater detail. These latter
authors observed additional spectral features and proposed
changes to the earlier band classifications. From a detailed
spectral analysis Friedman-Hill and Field (1992) obtained
accurate molecular constants for the NiO ground state and
identified another NiO band system in the one micron re-
gion. Balfour et al. (2004) simplified the emission spectrum
by cooling the emission source via an expansion jet and were
able to identify additional bands, particularly those associ-
ated with the lowest ground state energy level. The observed
rotationally resolved band spectra form a basic part of a new
spectral model (Gattinger et al., 2011a) which is used in the
present analysis. As some of the spectroscopic constants re-
quired to produce an accurate simulation are as yet unavail-
able it must be stressed the model is preliminary.

The dominant chemical reaction that produces NiO∗ in the
mesopause region is expected to be

Ni +O3 → NiO∗
+O2 (R1)

with a bond energy for NiO of 373± 3 kJ mol−1 (Wat-
son et al., 1993), the exoergicity of Reaction (R1) is
266± 4 kJ mol−1. Accordingly, the upper energy limit for
the NiO∗ product is approximately 22 600 cm−1, or 440 nm.
This limit is in agreement with the laboratory observations of
Burgard et al. (2006) (Fig. 1). The laboratory spectrum has
been converted to photon units to compare with the space-
borne observations discussed in the next section.

An independent laboratory spectrum of chemiluminescent
NiO∗ arising from the Ni + O3 reaction was obtained by Sr-
danov and Harris (1988). The spectral range extends from
approximately 480 nm to 600 nm (Fig. 1) and the spectral
resolution is considerably higher than for the Burgard et
al. (2006) spectrum of NiO∗. The two observed spectra in

Fig. 1. A comparison of two laboratory spectra of chemilumines-
cent NiO∗ together with a preliminary spectral model simulation.
The resolution of the Burgard spectrum in the visible region is ap-
proximately 5 nm.

Fig. 1 form the basis of a “reference” NiO∗ spectrum used in
the following sections to search for the presence of the NiO∗

spectral signature in the night airglow.
The preliminary spectral model of the NiO∗ bands (Gat-

tinger et al., 2011a) is also included in Fig. 1. This model
spectrum has been convolved with a slit function for an ap-
proximate match to the resolution of the Burgard et al. (2006)
spectrum. The primary function of the model in this study
is to relate the laboratory NiO∗ observations made at rela-
tively high pressures to the much lower pressure regime in
the mesopause region. A similar study involving FeO∗ ob-
servations in the laboratory and in the airglow (Gattinger et
al., 2011b) determined that the higher vibrational levels in the
airglow are more heavily populated than those in the higher
pressure laboratory observations. Accordingly, for the model
comparison with laboratory spectra in Fig. 1 the lower vibra-
tional levels in the excited NiO∗ states are assumed to be
more heavily populated than the upper levels. With this as-
sumption most of the prominent features observed in the two
laboratory spectra are matched by the model spectrum. The
extension of the NiO∗ model results appropriate to meso-
spheric pressures is discussed in the following sections.

Calculated Franck-Condon factors for the band systems
included in the NiO∗ spectral model must also be consid-
ered preliminary due to the lack of accurate spectroscopic
constants. Although individual relative band intensities will
change with more accurate Franck-Condon factors it is ex-
pected that the overall distribution will remain similar and so
have only a minor impact on the conclusions of the present
study.

At instrumental resolutions typical for very faint airglow
observations the spectrum in Fig. 1 will appear as a pseudo-
continuum. This “continuum” is expected to be very faint,
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thus making it difficult to detect in ground-based airglow
spectra, which necessarily contain a strong non-atmospheric
component (Sternberg and Ingham, 1972). Adding a fur-
ther complication, the non-atmospheric component varies
with galactic co-ordinates (Leinert et al., 1998). Conse-
quently, data obtained with limb-viewing space-borne spec-
trographs are better suited to the task because of the airglow
limb enhancement factor of at least fifty relative to the non-
atmospheric background. A search for a spectral signature in
night airglow space-borne observations which matches the
chemiluminescent NiO∗ “continuum” is described in the fol-
lowing sections.

3 Night airglow continuum observations with the
GLO-1 spectrograph

Limb-viewing spectra from the Arizona GLO-1 imaging
spectrograph (Broadfoot et al., 1992; Broadfoot and Bellaire,
1999) are described here as part of the search for the NiO∗

signature in the night airglow. The GLO-1 instrument is a
Space Shuttle-borne optical suite that included an imaging
spectrograph with a spectral range from 120 to 900 nm and a
spectral resolution that ranges from approximately 0.5 nm to
1 nm. In the current analysis the averaged GLO-1 night air-
glow tangent limb spectrum, shown in Panel A of Fig. 2, was
obtained on mission STS 53, 2–12 December 1992 (Broad-
foot and Bellaire, 1999). The altitude range for the averaged
spectrum is from approximately 85 km to 95 km. Other spec-
tra from this instrument have been used to study meteoric
metals in the thermosphere (Gardener et al., 1999).

Following the procedures described by Evans et al. (2010),
known airglow emission features were matched to the ob-
served spectrum. These features included the Herzberg O2
band systems, the Meinel OH bands, the O2 Atmospheric
bands and a number of atomic emission lines. The as-
sembled matching simulated spectrum is shown in Panel
B of Fig. 2. This model spectrum has been subtracted
from the observed spectrum of Panel A to give the differ-
ence spectrum that is shown in Panel C of Fig. 2. This
spectrum includes the “unidentified” features present in the
GLO-1 night airglow spectrum. From Panel C the aver-
age residual tangent limb brightness over the 320 to 380 nm
spectral range is approximately 2× 107 photons cm−2 s−1

nm−1. Converted to equivalent zenith viewing brightness,
assuming a tangent limb enhancement factor of fifty, this
is 4× 105 photons cm−2 s−1 nm−1, or 0.04 RayleighÅ−1.
This is approximately an order of magnitude fainter than the
ground-based continuum brightness observed by Broadfoot
and Kendall (1968), and underlines the difficulty of search-
ing for very faint continuum sources in ground-based spectra.

The residual “continuum” spectrum in Panel C of Fig. 2
shows a clear increase in brightness with increasing wave-
length from approximately 440 nm to 550 nm. In Fig. 3
the residual continuum observed by the GLO-1 instrument

Fig. 2. (A) The averaged night airglow limb spectrum from the Ari-
zona GLO-1 spectrograph on-board STS 53, approximately over the
85 km to 95 km altitude range.(B) Simulated night airglow spec-
trum to match the known spectral features in(A). (C) Panel(A) ob-
served spectrum minus panel(B) model spectrum. The difference
spectrum is spectrally convolved with a 1.3 nm half width triangular
function to improve figure clarity. Narrow spectral artifacts remain
at the locations of the bright airglow atomic lines. The residual is a
“continuum” with a broad peak near 600 nm.

(Panel C of Fig. 2) is compared with the NiO∗ model spec-
trum for laboratory pressure (Fig. 1) and the chemilumines-
cent NiO∗ model spectrum computed for mesospheric pres-
sures. The spectral region beyond 620 nm has been omitted
in order to stress the blue region. An average of the observed
unexplained nearly uniform continuum between 380 nm to
430 nm, approximately 3× 107 photons cm−2 s−1 nm−1, has
been subtracted from the residual spectrum over the whole
wavelength range.

The mesospheric NiO∗ model spectrum threshold in the
450 nm region is located to the blue by approximately 20 nm
compared with the model spectrum for laboratory pressure,
guided by the observed blue threshold of the GLO-1 spec-
trum. In the present analysis, a wedge distribution (decreas-
ing linear weights from 10 to 1) of vibrational level popu-
lations has been assumed for the laboratory pressures while
a flat distribution of equal weights has been used to simu-
late the vibrational distribution at mesospheric pressures lev-
els appropriate to the satellite observations. In the future,
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Fig. 3. Comparison between the GLO-1 observed airglow limb
“continuum” (solid, from panel(C) of Fig. 2) and the NiO∗ model
spectra for laboratory pressure (dash, from Fig. 1) and for meso-
spheric pressure (dot). The large noise spikes in the difference spec-
trum at OI 558 nm (panel(C) of Fig. 2) are replaced by a straight
line.

valuable information could be obtained from rocket releases
into the mesosphere that generate NiO∗ vapour trails using
techniques similar to those employed by Best et al. (1972) to
generate FeO∗ emissions.

Following the observations of Evans et al. (2010), the
residual GLO-1 spectrum in Fig. 2, Panel C, is expected to
include a component arising from mesospheric chemilumi-
nescent FeO∗ emissions. Evans et al. (2010) built their anal-
ysis on the observation of FeO∗ in persistent meteor trains
by Jenniskens et al. (2000). The FeO∗ component must be
removed from the total residual continuum to isolate any pre-
viously unidentified features. Least squares combinations of
the model mesospheric FeO∗ spectral profile (Gattinger et al.,
2011b) and the model NiO∗ spectral profile (Gattinger et al.,
2011a), along with the NO∗2 spectral profile (Becker et al.,
1972; Gattinger et al., 2009) known to be present in varying
amounts (McDade et al., 1986), are applied to the GLO-1
residual continuum in Fig. 4. Gattinger et al. (2010) found
that at latitudes equatorward of 40◦, commensurate with the
current observations, the NO∗2 signature is faint relative to the
more poleward night airglow NO∗2 brightness. The spectral
region above 670 nm is omitted in order to avoid the exces-
sive noise in the difference spectrum caused by the stronger
OH bands towards the infrared. The NiO∗ to FeO∗ ratio,
summed over the spectral region of Fig. 4, is 2.3± 0.2 as
derived from the least squares procedure. The NiO∗ model
threshold at 450 nm is well aligned spectrally with the ob-
served threshold. The NO∗2 to FeO∗ ratio is 1.3± 0.2, also
integrated over the full spectral range of Fig. 4. Again, it
must be stressed that the model simulations are preliminary
versions.

Fig. 4. Least-squares fit of the chemiluminescent FeO∗ model spec-
trum (dot-dot-dash), the NiO∗ model spectrum (short dash), the
chemiluminescent NO∗2 emission (long dash), and the total (solid)
to the GLO-1 observed airglow limb “continuum” from panel(C)
of Fig. 2 (+ + +), all averaged over 5 nm intervals. The large noise
spikes in the difference spectrum at OI 558 nm and OI 633 (panel
(C) of Fig. 2) are replaced by straight lines. The ratio of NiO∗ to
FeO∗ is 2.3± 0.2 and NO∗2 to FeO∗ is 1.3± 0.2, integrated over the
full spectral range of Fig. 4.

The mesospheric model spectrum in Fig. 4 contains fea-
tures at 455 nm and 470 nm which correspond to transitions
arising from upper levels centred onv′

= 5 of the upper elec-
tronic state of the “blue” NiO∗ band systems. These rel-
atively high vibrational levels observed in the airglow are
in accord with the premise that NiO∗ is excited to high vi-
brational levels at mesospheric pressures. The brightness of
the bands further towards the violet is constrained by the de-
creasing Franck-Condon factors for bands with larger vibra-
tional quantum differences.

4 Night airglow continuum observations with the
OSIRIS spectrograph

An analysis similar to that presented in the preceding section
was completed for selected tangent limb night airglow ob-
servations made with the space-borne OSIRIS spectrograph
(Llewellyn et al., 2004). The OSIRIS spectral range is from
274 nm to 815 nm with a resolution of approximately 1 nm.
Individual spectra, recorded as the bore-sight repetitively
scans the limb, are averaged over elapsed time to improve
signal-to-noise. The OSIRIS spectra presented here are fur-
ther averaged over latitudes in the Southern Hemisphere from
the equator through to 40◦ South, intentionally omitting the
more poleward regions to avoid the brighter NO∗

2 emissions
(Gattinger et al., 2010; Sheese et al., 2011).

An example of an average OSIRIS spectrum for June and
July 2003 is shown in Panel A of Fig. 5. Only a portion of
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Fig. 5. (A) OSIRIS averaged tangent limb spectrum for June and
July of 2003. The gap from 480 nm to 530 nm is the location of
the OSIRIS spectral order sorter.(B) Simulated night airglow spec-
trum scaled to match(A) observed spectral features.(C) Residual
spectrum (A minusB). The observed difference spectrum is spec-
trally convolved with a 2.5 nm half width triangular function to im-
prove figure clarity. The data gap from 480 nm to 530 nm in(C) is
filled assuming linear interpolation, and similarly for the strong OI
558 nm region.

the complete altitude range is included in this sample spec-
trum, namely from 85 km to 90 km. As in Fig. 2 for the
GLO-1 observations, the matching simulated spectrum of the
known airglow features, scaled to the observed OSIRIS aver-
age spectrum, is shown in Panel B of Fig. 5. The difference
between the observed spectrum in Panel A and the simulated
spectrum in Panel B is shown in Panel C of Fig. 5. This resid-
ual spectrum includes the “unidentified” features present in
the OSIRIS night airglow spectrum.

It is apparent that the OSIRIS residual “continuum” spec-
trum of Panel C of Fig. 5 differs in spectral shape from
the GLO-1 residual continuum shown in Panel C of Fig. 2.
In particular the component arising from the FeO∗ chemi-
luminescent emission appears to be more prominent in the
OSIRIS spectrum. This is addressed in a quantitative manner
in Fig. 6 where a least-squares fitting of the spectral profiles
of the NiO∗ and FeO∗ models for mesospheric pressure, plus
the model chemiluminescent NO∗

2 emission, is applied to re-
solve the three components present in the OSIRIS spectrum,

Fig. 6. Least-squares fitting of the chemiluminescent FeO∗ model
spectrum (dot-dot-dash), the NiO∗ model spectrum (short dash), the
chemiluminescent NO∗2 emission (long dash), and the total model
spectrum (solid) versus the OSIRIS observed 85 km to 90 km aver-
aged airglow limb “continuum” for June and July of 2003 (+ + +)
(panel(C) of Fig. 5), all averaged over 5 nm intervals. The ratio of
NiO∗ to FeO∗ is 0.3± 0.1 and NO∗2 to FeO∗ is 0.6± 0.1, integrated
over the full spectral range of this figure.

as in Fig. 4 for the GLO-1 analysis. The resulting NiO∗ to
FeO∗ ratio is 0.3± 0.1, integrated over the full spectral range
of Fig. 6 as determined from the least squares fitting proce-
dure. The NO∗2 to FeO∗ ratio is 0.6± 0.1.

Spectra from additional observing periods are included
here to stress the variability of the “continuum” as observed
by OSIRIS and to assist in evaluating the reliability of the
analysis technique. Using the approach leading to Fig. 6, for
the June and July period of 2004 (Fig. 7) the NO∗

2 and NiO∗

features are present but fainter than in Fig. 6. For the June
and July period of 2008 (Fig. 8) both the NiO∗ and NO∗

2 fea-
tures are absent with only the FeO∗ feature clearly present.
Sheese et al. (2011) relate the inter-annual NO∗

2 variability
to solar cycle effects. The positive identification of spectral
component changes in the OSIRIS data lends credence to the
results shown in Fig. 6 where the FeO∗, NiO∗ and NO∗

2 emis-
sions are all present.

In addition to the ratio variations demonstrated in the pre-
vious paragraphs, the brightness of the FeO∗ emission itself
is known to vary by at least a factor of five (Evans et al., 2010
– their Fig. 3). These results exemplify the variability which
should be expected in the FeO∗, NiO∗ and NO∗

2 emissions
when searching for their signatures in the terrestrial night
airglow. Photochemical models of the NiO∗ excitation pro-
cesses, combined with models of FeO∗ production and loss
(e.g. Plane, 2003) will need to address this variability. Pos-
sible sources and sinks are briefly discussed in the following
section.
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Fig. 7. Least-squares fitting of the chemiluminescent FeO∗ model
spectrum (dot-dot-dash), the NiO∗ model spectrum (short dash),
and the chemiluminescent NO∗2 emission (long dash), and the total
model spectrum (solid) versus the OSIRIS observed airglow 85 km
to 90 km averaged limb “continuum” for June and July of 2004
(+ + +), all averaged over 5 nm intervals. The ratio of NiO∗ to
FeO∗ is 0.1± 0.1 and NO∗2 to FeO∗ is 0.2± 0.1, integrated over the
full spectral range of Fig. 7.

5 Chemiluminescent NiO∗ emission sources and sinks

Since both NiO∗ and FeO∗ emissions are excited in the lab-
oratory by chemiluminescent reactions of Ni and Fe with
ozone (Burgard et al., 2006), and since both metals have their
source in meteorites, it is expected that NiO∗ would be an
emission feature in the night airglow following the identifi-
cation of FeO∗ (Evans et al., 2010; Saran et al., 2011). As
with FeO∗ excitation, the catalytic cycle

Ni +O3 → O2+NiO∗ (R2)

NiO+O→ Ni +O2 (R3)

is expected to play a major role in Ni atmospheric chemistry.
Like iron, the nickel atom is recycled and catalytically en-
hances the conversion of odd oxygen into O2. Currently the
rates for these two reactions do not appear to be available.

Typical altitude profiles of atomic iron have been de-
termined with LIDAR measurements (Kane and Gardner,
1993a) to centre around 90 km. From the OSIRIS limb radi-
ance observations for June and July of 2003, shown in Fig. 9,
the NiO∗ and FeO∗ components present in the unidentified
“continuum” described here also emanate from a similar al-
titude range. The altitude profiles are obtained by solving
the least squares equation set (see previous section) at each
altitude. Error bars are estimated based on the residuals be-
tween the sum of the least squares fit of the components and
the observed “continuum” at each altitude. From these pre-
liminary profiles the chemistry itself supports the thesis that
the emission feature could be due to NiO∗.

Fig. 8. Least-squares fitting of the chemiluminescent FeO∗ model
spectrum (dot-dot-dash), the NiO∗ model spectrum (short dash),
and the chemiluminescent NO∗2 emission (long dash), and the total
model spectrum (solid) versus the OSIRIS observed airglow 85 km
to 90 km averaged “continuum” for June and July of 2008 (+ + +),
all averaged over 5 nm intervals. The ratio of NiO∗ to FeO∗ is
0.05± 0.05 and NO∗2 to FeO∗ is 0.0± 0.1, integrated over the full
spectral range of Fig. 8. At the lowest tangent altitudes, near 80 km,
there appears to be an additional unexplained emission source in the
380 to 420 nm region which impacts the NO∗

2 component fit in each
of years 2003, 2004 and 2008.

The analysis of the NiO∗/FeO∗ ratio by the least squares
method above has been successful in deriving the individ-
ual emission intensities of FeO∗ and NiO∗ from a number
of spectra. There is considerable variability in the observed
NiO∗ to FeO∗ emission ratio in the night airglow. Summariz-
ing from the previous sections, the GLO-1 spectrum (Fig. 4)
indicates an NiO∗ to FeO∗ ratio of approximately 2:1 while
for the OSIRIS spectrum (Fig. 6) a ratio of approximately 1:3
is obtained. Additional OSIRIS spectra indicate an apparent
lack of NiO∗ emission on occasion.

While we have no explanation for this ratio variation it is
possibly in part due to the variability of the meteoritic metal
influx ratios. There are two sources of atmospheric nickel
from meteorites, ablation of meteors and sedimentation of
cosmic dust (Hemenway and Hallgren, 1970). Taenite (Fe,
Ni) is a mineral found naturally on Earth mostly in iron me-
teorites (Albertson et al., 1978); it is an alloy of iron and
nickel with nickel proportions ranging from 20 % up to as
high as 65 %. Typically, most meteorites have lower Ni/Fe
ratios, around 6 % (Brown and Patterson, 1947). The ele-
mental composition analysis of 200 samples of stratospheric
dust (Jessberger et al., 2001) indicated that the ratio of atomic
Ni/Fe in cosmic dust is near 80 %. The different sources of
meteoritic metals have been reviewed by Rietmeijer (2000).

Ablation from meteors maximizes between 85 km and
90 km (Kane and Gardner, 1993b), at times from meteors
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Fig. 9. Observed night airglow limb radiances obtained from aver-
aged OSIRIS spectra, June and July of 2003. The O2 Hz, OH and
Na curves are the scaled amounts used to form the airglow spectrum
subtracted at each altitude, e.g. panel(B) of Fig. 5. The FeO∗, NiO∗

and NO∗
2 curves are from the least squares fitting routine as applied

to the residual continuum at each altitude, e.g. panel(C) of Fig. 5.
Only those emissions within the spectral range of Fig. 6 are included
in the limb radiance sums. For the NiO∗ emission the equivalent
zenith differential brightness as detected from ground observations
would be approximately 0.1 Rayleigh per nm, or 0.01 Rayleigh per
Ångstrom.

that have high Ni/Fe ratios (Schramm et al., 1989) that origi-
nate from the cores of planetoids, the annual Leonids shower
in November is one example. The GLO-1 spectrum shown
in Fig. 4 was taken during the period from 2–11 December
1992. This immediately precedes the maximum of the GEM-
INID meteor shower, which is centered on 13 December
(Lokanadham et al., 2010), and follows the Leonids shower
of 17 November, a shower with highly variable rates (Brown,
1999) with a periodicity of 33 yr. However, while Gardner et
al. (2005) did observe a seasonal variation in Fe concentra-
tion at mid-latitudes, there was no clear indication of a tem-
poral correlation with the occurrence of meteor showers.

An additional factor influencing emission sources and
sinks is the complex altitude distribution of mesospheric
and thermospheric metals arising from meteor deposition
(Gardner et al., 1999). The profiles of Fe+ measured with
mass spectrometers on rocket flights suggest that the sedi-
mentation cosmic dust source is significant from 80 km to
above 120 km (Grebowsky and Aikin, 2002). This is fur-
ther supported by lidar measurements of atomic sodium,
which demonstrate an ablation profile superimposed on a
much broader altitude background profile (Lokanadham et
al., 2010). Differences in meteor ablation rates (Vondrak et
al., 2008), and sink mechanisms (Plane, 2003), could also
have a significant impact.

Another possible reason for the NiO∗ to FeO∗ ratio vari-
ability might be significant differences in the luminous ef-

ficiency of the reaction products. West and Broida (1975)
estimated a 2 % to 6 % production efficiency of FeO∗ from
Fe + O3. Extrapolating their laboratory measurements taken
at two relatively high pressures to the much lower meso-
spheric pressures suggests that this efficiency could increase
considerably above 6 %. Currently there does not appear to
be a quantitative laboratory measurement of the analogous
NiO∗ production efficiency.

6 Summary

The discovery of a chemiluminescent FeO∗ emission feature
in OSIRIS/Odin spectra of the night airglow near 87 km has
raised interest in other meteorite metallic emissions in the
airglow. Since the meteorite source of atomic metals in the
mesosphere contains both iron and nickel, with Ni being typ-
ically 6 % of Fe, it is expected that faint emissions involving
Ni should also be present in the night airglow. A new spectral
model has been used to model the laboratory observations of
chemiluminescent NiO∗ emissions and then to search for the
signature of NiO∗ in satellite measurements of the night air-
glow. A faint, previously unidentified, “continuum” extend-
ing longwave of 440 nm has been identified in night airglow
spectra obtained from two space-borne limb viewing instru-
ments. From a comparison with laboratory spectra this con-
tinuum is identified as arising from the NiO∗ emission. A
simultaneous least-squares fit for the NiO∗, FeO∗ and NO∗

2
spectral profiles was conducted on Shuttle GLO and OSIRIS
satellite observations of visible airglow spectra. The ob-
served ratio of NiO∗/FeO∗ is 2.3± 0.2 from the GLO ex-
periment and from 0.05± 0.05 to 0.3± 0.1 for the OSIRIS
observations. The similarity of the altitude profiles of the
NiO∗ and FeO∗ emissions also suggests that the new airglow
emission is NiO∗ since both chemiluminescent oxides can
originate from atomic reactions with ozone. Possible causes
of this observed ratio variation are briefly discussed.
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