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5 We study the small-scale behavior of generalized two-dimensional turbulence governed by a family of

6 model equations, in which the active scalar §=(—A)*?y is advected by the incompressible flow u= (-, ¥,).

7 Here i is the stream function, A is the Laplace operator, and « is a positive number. The dynamics of this

8 family are characterized by the material conservation of §, whose variance (#?) is preferentially transferred to

9 high wave numbers (direct transfer). As this transfer proceeds to ever-smaller scales, the gradient V6 grows
10 without bound. This growth is due to the stretching term (V&-V)u whose “effective degree of nonlinearity”
11 differs from one member of the family to another. This degree depends on the relation between the advecting
12 flow u and the active scalar 6 (i.e., on @) and is wide ranging, from approximately linear to highly superlinear.
13 Linear dynamics are realized when Vu is a quantity of no smaller scales than 6, so that it is insensitive to the
14 direct transfer of the variance of 6, which is nearly passively advected. This case corresponds to a=2, for
15 which the growth of V@ is approximately exponential in time and nonaccelerated. For a<<2, superlinear
16 dynamics are realized as the direct transfer of {¢*) entails a growth in Vu, thereby, enhancing the production
17 of V6. This superlinearity reaches the familiar quadratic nonlinearity of three-dimensional turbulence at «
18 =1 and surpasses that for @<<1. The usual vorticity equation (a@=2) is the border line, where Vu and 6 are of
19 the same scale, separating the linear and nonlinear regimes of the small-scale dynamics. We discuss these
20 regimes in detail, with an emphasis on the locality of the direct transfer.
21 DOI: XXXX PACS number(s): 47.27.—i
22
23 L. INTRODUCTION for the cascade universality mentioned in the preceding para- 56

24  The production of progressively smaller scales, possibly
25 to be limited by viscous effects only, in incompressible fluid
26 flow at high Reynolds numbers, is a fundamental problem in
27 fluid dynamics. This long-standing problem is of genuine
28 interest for obvious reasons. One is that the production of
29 small scales plays a key role in the possible development of
30 singularities from smooth initial conditions in the three-
31 dimensional (3D) Euler or Navier-Stokes equations that gov-
32 ern the flow. Another reason is that in the presence of a
33 large-scale forcing, a persistent production of small scales
34 would be crucial to maintain a spectral energy flux (direct
35 energy cascade). The realizability of such a steady and
36 viscosity-independent flux is central to the Kolmogorov
37 theory of turbulence as this would be required to rid the
38 virtually inviscid energy inertial range of the injected energy,
39 thereby, making it possible for a statistical equilibrium to be
40 established. This dynamical scenario is either explicitly or
41 implicitly assumed to apply to other fluid systems as well,
42 not just the 3D Navier-Stokes equations. For example, in the
43 Kraichnan-Batchelor [1-3] theory of two-dimensional (2D)
44 turbulence, the dynamics of the mean-square vorticity (twice
45 the enstrophy) are assumed to be synonymous in many as-
46 pects to those of the 3D energy. In particular, the enstrophy
47 injected into the system at large scales is hypothesized to
48 cascade to a dissipation range at small scales. As another
49 example, the mean-square potential vorticity in the quasigeo-
50 strophic geophysical flow model is believed to behave in a
51 similar manner [4]. Thus “cascading dynamics” have been
52 considered universal among fluid systems.

53  The evolution of fluid flow is intrinsically nonlinear be-
54 cause of the quadratic advection term, which couples all
55 scales of motion. Apparently, this is an underpinning reason
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graph. However, the “effective degree of nonlinearity” of the 57
small-scale dynamics is not always quadratic and differs 58
from one system to another. The implication is that the pre- 59
sumed cascades would have fundamental differences and 60
would not be universal in a strict sense. For an example of 61
the discrepancy in the effective degree of nonlinearity among 62
fluid systems, let us consider the respective evolution equa- 63
tions for the 3D vorticity @ and 2D vorticity gradient Vo 64

given by 65
dw+ - Vio=(w-Vu, V- -u=0 (1) 66
and 67

WVo+tw-V)YVo=on XVo-(Vo-V)u, V -u=0,
(2) 68

where u is the fluid velocity and n is the normal to the fluid 69
domain in 2D. The stretching term (w-V)u for the 3D vor- 70
ticity @ in Eq. (1) is essentially quadratic in @ because the 71
velocity gradient Vu is expected to behave as @ on phenom- 72
enological grounds. As a consequence, an explosive 3D vor- 73
ticity growth from a smooth initial vorticity field is possible, 74
if not inevitable [5,6]. In contrast, the stretching term 75
(Vw-V)u for the 2D vorticity gradient Vw in Eq. (2) is vir- 76
tually linear in Vw because Vu is well behaved in the sense 77
that the mean-square vorticity (w?)={|Vu|?) is conserved. 78
(Note that the rotation term wn X Ve does not affect the 79
amplitude of Vw.) As a result, the growth of 2D vorticity 80
gradients can possibly be approximately exponential in time 81
only, a relatively mild behavior. Hence, one would expect 82
profound differences between the (highly nonlinear) 3D vor- 83
ticity and the (nearly linear) 2D vorticity gradient dynamics. 84
A notable example of these differences is that in the inviscid 85
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86 limit, the 2D enstrophy dissipation rate vanishes [7-9],
87 whereas the 3D energy dissipation rate presumably remains
88 nonzero. Another example is the discrepancy in the depen-
89 dence on the Reynolds number of the number of degrees of
90 freedom in the two cases [10].

91  The effective degree of nonlinearity in the above sense
92 differs not only between 2D and 3D fluids but also among
93 2D fluid systems. In this study, we investigate this varying
94 degree among members of a broad family of generalized
95 models of 2D turbulence, first introduced by Pierrehumbert
96 ef al. [11]. By doing so, we extend several previous studies
97 [12-15], aiming to unify our understanding of turbulent
98 transfer in physically realizable fluid systems. The family’s
99 dynamics are characterized by the material conservation of
100 the active scalar §=(—A)%?y, whose variance () is prefer-
101 entially transferred to high wave numbers (small scales).
102 Here ¢ is the stream function, A is Laplace’s operator, and «
103 is a positive number. As the transfer of (#?) proceeds to
104 ever-smaller scales, the gradient V& grows without bound.
105 This growth is due to the stretching term (V6-V)u, whose
106 effective degree of nonlinearity depends on « and is wide
107 ranging, from approximately linear to highly superlinear.
108 Linear behavior is realized when Vu is a quantity of no
109 smaller scales than 6, so that the transfer of (%) to the small
110 scales (direct transfer) has no significant effects on Vu. In
111 other words, @ behaves nearly passively. This case corre-
112 sponds to =2, for which V@ can grow approximately ex-
113 ponentially in time without acceleration. For o <2, superlin-
114 ear dynamics can be realized as the direct transfer of (6%)
115 entails a growth in Vu, thereby, enhancing the production of
116 V6. This superlinearity reaches the familiar quadratic nonlin-
117 earity of three-dimensional turbulence at a=1 and exceeds
118 that for a<1. The usual vorticity equation (a=2) is the bor-
119 der line, where Vu and @ are of the same scale ({|Vu|?)
120 =(#?)), separating the linear and nonlinear regimes of the
121 small-scale dynamics. We discuss these dynamical regimes
122 in detail, with an emphasis on the local nature of the transfer
123 of (6%). The implication of the present results is that a com-
124 prehensive theory for this family of generalized 2D turbu-
125 lence needs to account for the wide range of effective de-
126 grees of nonlinearity of the family’s small-scale dynamics.

127 II. GOVERNING EQUATIONS

128  The equation governing the evolution of the family of
129 active scalars O=(—A)¥?y (for a>0) advected by the in-
130 compressible flow u=(=,,#,) is

131 0,+u-Vo=0. (3)

132 This equation was proposed by Pierrehumbert e al. [11] in
133 an attempt to better understand the nature of transfer locality
134 in 2D turbulence, by examining how turbulent transfer re-
135 sponses to changes in the parameter «. Equation (3) is physi-
136 cally relevant for selected values of a. The usual 2D vorticity
137 equation corresponds to a=2. When a=1, Eq. (3) is known
138 as the surface quasigeostrophic equation and governs the ad-
139 vection of the potential temperature, which is proportional to
140 #=(-A)"?y, on the surface of a quasigeostrophic fluid. In
141 addition to the genuine interest due to this physical signifi-
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cance [12-20], the surface quasigeostrophic equation has re-
ceived some special attention for its resemblance to the 3D
Euler system [21-24]. A mathematical feature of particular
interest is the possible development of finite-time singulari-
ties (from smooth initial conditions), which, as argued by
pioneering studies [21,22,25] of this problem, could be asso-
ciated with the formation of weather fronts in the atmo-
sphere. This, however, appears not to be the case [26].

For simplicity, we consider Eq. (3) in a doubly periodic
domain of size L, and all fields concerned are assumed to
have zero spatial average. This allows us to express the
stream function as

(4)

154

e z,Ab(k,t)exp{ik -x}.
k

155

156
157
158
159

Here k=2mL"'(k,,k,), where k, and k, are integers not si-

multaneously zero. The reality of i requires (k)= (
—k 1), where the asterisk denotes the complex conjugate. The
fractional derivative (—A)®? (which can be readily extended
to @< 0, though not considered in this study) is defined by

0(x,1) = (= A)*2(x,1) = >, k*lk,)exp{ik - x}
k

160

(5)

=, O(k,t)exp{ik - x},

k 161
where k=|k| is the wave number. Equation (3) expresses ma- 162
terial conservation of 6, which gives rise to an infinite set of 163
conserved quantities. In particular, the generalized enstrophy 164
(active scalar variance) 165

1 N
Ly =1gc g =13 egwar @)
2 2 2% 166

is conserved. In addition, the generalized energy 167

1 “
l<¢0> = —(|(= M)y = s kb, (7)
2 2 2% 168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

is also conserved. Note that E is the usual kinetic energy
when a=2, while Z is the usual kinetic energy when a=1.
Only for these cases is the kinetic energy conserved. The
modal powers (spectra) of E and Z differ by the factor k%
Therefore, the redistribution of a non-negligible amount of E
to small scales would violate the conservation of Z. Simi-
larly, the redistribution of a non-negligible amount of Z to
large scales would violate the conservation of E. This means
that if a spectrally localized profile is to spread out in wave-
number space, most of £ and Z get transferred to large and
small scales, respectively. This is the basis for the dual cas-
cade hypothesis in 2D turbulence. Here we are mainly con-
cerned with the direct transfer of Z. A more complete treat-
ment should include the inverse transfer of E as well since
these are known to be intimately related.

Given Eq. (4), we can express u=(—;,,) in terms of a
Fourier series in the form
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u(x,1) =i, (= ky k) ke, explik - x}. (8)
k

186
187 By substituting Egs. (5) and (8) into Eq. (3), we obtain the
188 evolution equation for each individual Fourier mode 9(k,t)
189 =k“fﬁ(k,t) of the conserved quantity 6

d (m*=L€M€ X m .,

" ok, )= >, o 6(€,1)0(m. 1),

C+m=k

)

190

191 where € Xm={,m,— € m,. The sum on the right-hand side of
192 Eq. (9) involves all modes [except 8(k,7)] and is a measure

193 of the level of “excitation” of the mode 6(k,?) due to all
194 admissible wave vector triads k=€ +m. For a given triad, the
195 coupling coefficient (m*—£€*)€ Xm/({*m®) depends on «a.
196 Its magnitude, together with the magnitudes of the coupling

197 coefficients in the governing equations for é(f,t) and

198 @(m,t), is a measure of triad dynamical activity, in the sense
199 that larger (in magnitude) coupling coefficients correspond to
200 more intense modal dynamics. This is intimately related to
201 the effective degree of nonlinearity and locality of the small-
202 scale dynamics as will be seen in the subsequent sections.

203 III. EFFECTIVE DEGREES OF NONLINEARITY OF THE
204 SMALL-SCALE DYNAMICS

205 We now examine the behavior of V6. Generally speaking,
206 any derivative (—A)”6, for >0, can be called a small-scale
207 quantity. Here we consider V6, which is a “twin brother” of
208 (—A)"20, for its special status in Eq. (3) as well as its math-
209 ematical tractability. For =2, a similar treatment of Af=
210 —Aw can be carried out in the same manner.

211 A. Growth of the active scalar gradient
212 The governing equation for V6 is
213 AV O+m-V)VO=VXuxVe-(VO-V)u, (10)

214 which can be obtained by replacing w in Eq. (2) by 6. Like
215 Eq. (2), the effect of the first term on the right-hand side of
216 Eq. (10) is to rotate V& without changing its magnitude. The
217 amplification of V@ is due solely to the stretching term
218 (VO-V)u and is governed by

Y
3|V + (u-V)|V6| = - g (V0 V= Vul|V 4.
219 (11)
220 Equation (11) implies that following the fluid motion, |V 4|

221 can grow exponentially in time with an instantaneous rate
222 bounded from above by |Vu|. Hence, the behavior of |Vu|
223 holds the key to understanding the dynamics of V. Evi-
224 dently, following the trajectory of a fluid “particle” starting
225 from x=x, at t=0, the growth of |V 6| is formally constrained
226 by
t

[V6| < |V8ylexp f |Vul|dr ¢, (12)
227 0

228 where 6,=0(x,,0) and the integral is along the trajectory in
229 question. Hence, on average, the rate r defined by

PROOF COPY [EJ10580] 133912PRE

1-3

PHYSICAL REVIEW E 80, 1 (2009)

(13)
230

provides an upper bound for the exponential growth rate of 231
[V6|. Note that for a=1 ({|Vu|?)=(|V6|?)), a double expo- 232
nential growth of |V 6| is allowed but not necessarily implied 233
by the preceding equations. Nevertheless, it is interesting to 234
note that Ohkitani and Yamada [24] observed such a behav- 235
ior in their simulations, thereby, suggesting a negative an- 236
swer to the question of finite-time singularities in the surface 237
quasigeostrophic equation. This is consistent with the proof 238
of nonexistence of blowup by Cérdoba [26]. 239

B. Linear versus nonlinear growth of V6 240

241
242
243
244
245
246

Now for a sense of the behavior of r, we consider
(|Vu|*)'”2, which bounds {|Vu|) from above by the Cauchy-
Schwarz inequality (|Vu|)=(|Vu|?)"2. For ae[2,4],
(|Vu|?)!? can be estimated in terms of the inviscid invariants
using the following version of the Holder inequality (see, for
example, Sec. 5 of Ref. [14]):

<|Vu|2>1/2 <= <|(_ A)a/4w|2>l_2/a<|(_ A)a/2¢|2>2/a_1/2

— El—2/aZZ/a—l/2-

247

(14) 248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

So (|Vu|?)!? is controlled by the inviscid invariants E and Z.
For a¢[2,4], inequality (14) reverses direction. Further-
more, if an initial distribution of @ is to forever spread out in
wave-number space, {|Vu|*)""? increases without bound for
this case. This implies that there exist different regimes of «,
for which Vu evolves quite differently, and the active scalar
gradient dynamics can be characteristically distinct. We dis-
cuss all these regimes in what follows.

For a<2, the divergence of {|Vu|?)!" entails an acceler-
ated growth of V@ from an exponential one. This is the su-
perlinear regime discussed in the introductory section. This
superlinearity reaches the usual quadratic nonlinearity of 3D
turbulence at =1, where (|Vu|?)=(|V6|?). Hence, the sur-
face quasigeostrophic and 3D Euler equations are analogous
in this aspect. However, the analogy appears to be superficial
as the surface quasigeostrophic equation turns out to be far 264
more “manageable” than its 3D counterpart: a consequence 265
of the material conservation of . For example, a number of 266
global regularity results have been proved for the surface 267
quasigeostrophic equation, by making use of mild dissipation 268
mechanisms represented by (—A)” with »=1/2 [27-30], 269
which can be much weaker than the usual viscosity. Whereas 270
for the 3D Navier-Stokes system, viscosity appears to be 271
inadequate for the same purpose. For a<<1, this quadratic 272
nonlinearity is surpassed as the ratio {|Vu|?)/(|V %) diverges 273
in the limit (|V 6|*) —c because 274

(IVO»> > = ([Vul* ¢*)' (15) 275

276
277
278

(cf. Ref. [14]). Active scalar gradient production can then
become highly intense.

For @e[2,4], Vu is well behaved in the sense that its
mean square is bounded from above in terms of the inviscid 279
invariants [see Eq. (14)]. In this case, Vu is virtually unaf- 280
fected by the direct transfer of (6*). At large ¢, a general fluid 281
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282 trajectory is likely to have traversed the domain many times.
283 The time average in Eq. (13) may therefore be approximately
284 replaced by the spatial average. Hence, we can write

285 = <|Vu|> = <|Vu|2>1/2 = E1—2/aZ2/a—l/2, (16)

286 where we have used the Cauchy-Schwarz inequality and Eq.
287 (14). This approximation of r means that V6 can grow expo-
288 nentially in time without acceleration. Thus, approximately
289 linear small-scale dynamics can be expected. Note that 6
290 behaves almost as a passive scalar in this regime. The anal-
291 ogy between this case and that of a passive scalar was sug-
292 gested by Schorghofer [12] on phenomenological grounds.
293  When «a>4, inequality (14) reverses direction, and
294 (|Vu|*)!? can no longer be controlled by the inviscid invari-
295 ants. However, unlike the case a<2, for which (|Vu|?)!?
296 diverges toward small scales, when >4 velocity gradients
297 can be produced at increasingly large scales only. This pro-
298 duction depends on the inverse transfer of the generalized
299 energy E (Tran 2004). Within the direct transfer range, i.e.,
300 the generalized enstrophy range, the portion of {|Vu/|?), say
301 (), cannot increase and instead remains bounded from above
302 in terms of Z. More precisely, as the spectra of {|Vu/|*) and Z
303 differ by the factor k***, we have Q=2k*2*Z (Poincaré
304 type inequality), where k. is the lower wave-number end of
305 the generalized enstrophy range. This suggests that no sig-
306 nificant changes in the effective degree of nonlinearity of the
307 small-scale dynamics occur when « exceeds 4. Thus, we can
308 expect approximately linear small-scale behavior for all «
309 =2.

310 In passing, it is worth mentioning that while the small-
311 scale dynamics appear to be insensitive to « in the regime
312 a>2, the large-scale dynamics can vary dramatically. The
313 reason is that for large «, u is prone to divergence toward
314 large scales as the inverse transfer of E proceeds. This un-
315 doubtedly intensifies motions at large scales. One may adapt
316 the present notion of degree of nonlinearity for a quantitative
317 measure of the large-scale dynamics. Analogous to the tradi-
318 tional problem of regularity, which is concerned with the
319 possible divergence of V6, there is a potential problem that u
320 becomes divergent for sufficiently large « if the fluid is un-
321 bounded. This interesting problem is left for a future study.

322  IV. LOCALITY OF THE SMALL-SCALE DYNAMICS

323  This section is concerned with the small-scale dynamics
324 at the modal level. We establish a connection between the
325 degree of nonlinearity and dynamical activity of typical local
326 triads at small scales. Here the dynamical activity of a given
327 triad is associated with the magnitude of the coupling coef-
328 ficients within the triad and is independent of the amplitude
329 of the three modal members. These local triads are shown to
330 be highly active for & <2 and moderately active for =2 but
331 become virtually inactive for @>2. This implies that higher
332 effective degrees of nonlinearity correspond to more dynami-
333 cally intense local triads. Thus, the effective degree of non-
334 linearity is also a measure of dynamical activity of local
335 triads at small scales. The transition at &=2 from high activ-
336 ity to virtually no activity of local triads is consistent with
337 phenomenological arguments [11] that the generalized en-
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strophy cascade is spectrally local for «<<2 but becomes 338
dominated by nonlocal interactions for a>2. Below, we also 339
examine the dynamics of nonlocal triads and elaborate on the 340
nature of the locality transition, in order to provide a detailed 341
picture of the direct transfer of (#?) at the modal level. 342

Within each individual triad k=€+m, the transfer of 343

modal generalized enstrophy is governed by 344
d . 2_(m”‘—€‘)‘)€><m A a
mwwn- e L0 6m) 6 (k) a5
+ 6°(0)6°(m) 6(k)] = C,[ 6(€) 6(m) 6" (k) 346
+6°(0) 6" (m)6(k)], 347
iA 2_(k“—m“)€><m A "
dllﬁ(t’)l = e UOUACOIAC) a8
+ 0" (k) 8(m) 6(€)] = C [ 0(k) 6" (m) 6 (€) 349
+ 6°(k)B(m) 6(€)], 350
d - (kN Xm . . .
) = —— 6k ()¢ (m) 451
+ 0" (k) 8(€)8(m)] = C,,[ (k) 6 (€) 6" (m) 352
+ 6°(k)8(€)6(m)], (17) 353

where we have used the identities € Xm=€ Xk=k Xm and 354
suppressed the time variable. It is well known that both E 355

and Z are conserved for each individual triad. This can be 356
readily verified by the fact that the coupling coefficients in 357
Egs. (17), Cy, C and C,,, satisfy 358
C Co C
Cr+Co+Cp=0=—% 4 =L =
k 4 m 359
Furthermore, the transfer of £ and Z is from the intermediate 360
wave number to both the larger and smaller wave numbers or 361
vice versa (note the signs of the coupling coefficients). The 362
former behavior appears to have been observed in numerical 363
simulations of 2D turbulence without exception. 364
We now analyze the coupling coefficients Cy, C, and C,, 365
in detail. As crude estimates that hold in general, these can 366
be bounded by (assuming k<I<<m) 367
|(m® = €€ X m|
Cyl=————— < k',
1€ meee 368
(k*=m“)€ X m
|C€| — | — | < €k1—a’
k“m 369
(6% = k)€ X m|
Cpl=———— < k' 18
| | £k ( ) 370
where we have used |[€ X m|=|€ X k|<k{. Similar estimates 371

were obtained in [20] (for @=1,2) and in [31] (for a=1). For 372
a>2, local triads (i.e., k<€ =<m) at small scales are effec- 373
tively “turned off” because all Cy, C, and C,, tend to zero in 374
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375 the limit k— . Furthermore, the convergence is as rapid as
376 k*~*. An immediate interpretation of this observation is that
377 local triads can be relatively ineffective in the direct transfer
378 of (#*) compared with their nonlocal counterparts (see be-
379 low). At the critical value @=2, C;, C; and C,, can remain
380 order unity for local triads that satisfy [¢ Xm|~k* and |m“
381 — €9 = [k*—m®| = [€*~ k% = k*. A majority of local triads sat-
382 isfy both of these conditions. They are neither “ultrathin” nor
383 nearly isosceles and correspond to relatively sharp estimates
384 in Eqs. (18), which reduce to |Cy|=|C(|=|C,|=1. This
385 means that local triads at small scales in the usual vorticity
386 equation are moderately active. They can play a significant
387 role in the direct transfer. Finally, for <2, the interaction
388 coefficients of these same triads diverge as k—oc. Their di-
389 vergence can be seen to be as rapid as k>~%. This result sug-
390 gests that for this case, local triads can play an overwhelm-
391 ingly dominant role in the direct transfer.

392  Next, we turn to nonlocal triads. These are thin triads with
393 the wave numbers k, € and m, satisfying k<<€ <m. For this
394 case, Cy, Cy and C,, can be estimated as follows:

cl |(m*—€9€ X m|  ak?
=" a0 "

395 mee* e
k*—m*€ X m
o = E=mm] e
396 km®
|(£% = k*)€ X m|
C,l=—"""——= ¢k 19
397 Gl 0% (19)

398 In the limit £ — oo (while k<), C, vanishes, but both C,
399 and C,, (C;=-C,,) diverge as rapidly as €. This implies a
400 vigorous exchange of generalized enstrophy between the two
401 neighboring wave numbers € and m, mediated by a virtually
402 nonparticipating distant wave number k. This ultralocal
403 transfer by nonlocal interactions is virtually independent of «
404 as the divergence of C, and C,, is insensitive to «. This result
405 implies that local transfer by nonlocal interactions is an in-
406 trinsic characteristic of this family of 2D turbulence models.
407 Note, however, that this transfer can be significant only when
408 the spectrum of the generalized enstrophy is not steeper than
409 k! [32]. In other words, the generalized enstrophy needs to
410 be physically present at small scales in order to facilitate
411 such a transfer. This suggests that for &> 2 (recall that local
412 triads are dynamically inactive), the generalized enstrophy
413 spectra can plausibly scale as k™! because steeper spectra are
414 unable to support a non-negligible direct transfer. This uni-
415 versal scaling was suggested by Schorghofer [12] and Wan-
416 tanabe and Iwayama [15]. Their justification is that 6 can be
417 considered as a passive scalar, a view in accord with the
418 present analysis.

419  In passing, it is worth mentioning that the divergence of
420 C; and C,, in nonlocal triads is probably the reason for nu-
421 merical instability in simulations of 2D turbulence with in-

476
477
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adequate diffusion because local triads with coupling coeffi- 422
cients of order unity are evidently well behaved. Support for 423
this claim can be derived from common observations that 424
numerical divergences occur as soon as the modes in the 425
vicinity of the truncation wave number are excited and well 426
before they acquire any considerable amount of enstrophy. 427
The same instability problem persists for a>2, although the 428
weak activities of local triads in this case may reduce the 429
severity of the instability to a certain extent. 430

V. CONCLUDING REMARKS 431

We have presented the notion of effective degree of non- 432
linearity to quantify the small-scale dynamics of a family of 433
generalized models of two-dimensional turbulence governed 434
by a broad class of nonlinear transport equations. Here, the 435
active scalar 6=(-A)¥?¢ (a>0) is advected by the incom- 436
pressible flow u=(=4,, ), where ¢ is the stream function. 437
We have argued that although the advection term is qua- 438
dratic, the effective degree of nonlinearity of the small-scale 439
dynamics is not always quadratic and depends on «. It has 440
been found that the active scalar gradient dynamics are vir- 441
tually linear for «=2 and become nonlinear for a<2. Fur- 442
thermore, the degree of nonlinearity increases as « is de- 443
creased from 2, becoming quadratic at a=1 and exceeding 444
quadratic nonlinearity for a<<1. It is conceivable that cred- 445
ible theories of the family’s dynamics, particularly, those in- 446
volving small scales, need to account for the dependence on 447
a of the effective degree of nonlinearity. 448

We have also found that local triads at small scales are 449
highly active for a<<2, moderately active for a=2, and vir- 450
tually inactive for a>2. On the other hand, nonlocal triads 451
are characterized by a vigorous exchange of generalized en- 452
strophy between pairs of neighboring wave numbers, medi- 453
ated by the third nonparticipating distant wave number. This 454
property is common for all «, thereby, implying that nonlocal 455
interactions (but ultralocal transfer) can be considered uni- 456
versal. In the absence of local triad activity (a>2), this ul- 457
tralocal transfer is responsible for the direct transfer of gen- 458
eralized enstrophy. This is similar to the problem of passive 459
scalar transport by a large-scale flow as the weak feedback 460
on the advecting flow by the active scalar can be neglected 461
[32]. In this case, it appears plausible that generalized enstro- 462
phy spectra scale as k™! 463

The local nature of the generalized enstrophy transfer can 464
be seen to be unambiguous in the present study. In general, 465
this transfer is local in wave-number space regardless of 466
what types of triads make the most contribution. For local 467
triads, the generalized enstrophy transfer is inherently local. 468
For nonlocal interactions, the transfer is even “more” local, 469
having a relatively higher degree of locality compared to the 470
transfer by local triads. More importantly, the transfer be- 471
tween distant wave numbers is largely insignificant. Hence, it 472
makes sense to speak of the degree of locality of the direct 473
generalized enstrophy transfer rather than to distinguish be- 474
tween local and distant transfers. 475
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