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A vertically standing freely-rotating ellipsoidal vortex of uniform anomalous potential
vorticity in a rotating stratified fluid under quasi-geostrophic conditions of small
Rossby and Froude numbers steadily rotates without change of form. The vortex can
have arbitrary axis lengths, but must have one axis parallel to the vertical z-axis along
the direction of gravity. The rotation rate is proportional to the potential vorticity
anomaly but otherwise depends on only two independent aspect ratios characterizing
the shape of the vortex. The linear stability of this class of vortex equilibria was first
determined semi-analytically more than a decade ago. It was found that vortices are
unstable over a wide range of the parameter space and are stable only when strongly
oblate and of nearly circular cross-section.

New results, presented here, using a complementary approach and backed by non-
linear simulations of the full quasi-geostrophic equations indicate that these ellipsoidal
vortices are in fact stable over a much wider range of parameter space. In particular, a
mode previously thought to be unstable over much of the parameter space is evidently
stable. Moreover, we have determined that this mode is just the difference between
two neighbouring equilibrium states having slightly different horizontal aspect ratios;
hence, this mode must be neutrally stable. Agreement is found for all other modes.
However, by an independent analysis considering only ellipsoidal (though time-
varying) disturbances, we have identified one unstable mode as purely ellipsoidal, i.e.
it does not change the form of the ellipsoid, only its shape. Under this instability, the
vortex quasi-periodically tilts over while undergoing mild changes in shape.

The range of parameters leading to non-ellipsoidal instabilities turns out to be nar-
row, with instability principally occurring for highly eccentric (horizontally squashed,
prolate) vortices. The long-term fate of these instabilities is examined by nonlinear
contour-dynamical simulations. These reveal a wealth of complex phenomena such as
the production of a sea of small-scale vortices, yet, remarkably, the dominant vortex
often tends to relax to a stable rotating ellipsoid.

1. Introduction
With recent improvements in both observations and simulations of the Earth’s

atmosphere and oceans, it has become evident that vortices, coherent masses of
swirling fluid, play a major if not dominant role in the global circulation. Vortices
are nonlinear manifestations of the high-Reynolds-number rotating stably-stratified
fluid dynamics operating in these environments. They appear spontaneously, e.g. as
instabilities, within the large-scale mean flow, and they are so numerous and energetic
that they contribute strongly to the very mean flow they erupt from. Indeed, the
large-scale circulations are thought to be ‘eddy-driven’, i.e. driven by vortices (Holton
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et al. 1995; Garrett 2000). In the North Atlantic ocean alone, observations suggest that
there are at least 10 000 vortices present in the surface layers (Ebbesmeyer et al. 1986),
and with increasing resolution, numerical simulations of the global circulation are
continually revealing more and longer-lived vortices (Siegel et al. 2001).

There are hence compelling reasons to understand better the behaviour of geophys-
ical vortices. Perhaps the simplest pertinent model to do this is the quasi-geostrophic
model, which applies for small Rossby and Froude numbers (strong background
rotation and stratification). This model has become the workhorse of geophysical
fluid dynamics, and its range of applicability appears to be significantly broader than
strict asymptotics would indicate (cf. Dritschel & Viúdez 2003 and references therein).
The quasi-geostrophic (QG) model filters relatively high-frequency inertia-gravity
waves, leaving the (often) dominant vortical motions. The latter are fully controlled
by the advection of a scalar field, the potential vorticity (PV), which is conserved
following fluid elements in the absence of diabatic or dissipative processes.

In this work, we focus on the inviscid QG dynamics, and in particular investigate the
stability of a class of vortex solutions discovered by Zhmur & Shchepetkin (1991) and
Meacham (1992) and related to the ‘gravitational ellipsoids’ investigated by numerous
mathematicians in the eighteenth and nineteenth centuries (see Chandrasekhar 1969
and references therein). They found that an ellipsoid, having arbitrary axis lengths and
an arbitrary orientation, remains an ellipsoid for all time though the axis lengths and
orientation generally vary in time. Certain special configurations simply rotate steadily
about the vertical z-axis: (i) a vertically standing ellipsoid of arbitrary axis lengths, and
(ii) a tilted spheroid (two axes of identical length, and the third tilted at an arbitrary
angle with respect to the vertical). The stability – with respect to infinitesimal non-
ellipsoidal perturbations – has been investigated for both configurations, with (i) the
focus of Meacham (1992) and (ii) the focus of Miyazaki, Ueno & Shimonishi (1999).

Both analyses were semi-analytical, expanding perturbations in a finite series of
special functions associated with an ellipsoid, then solving an eigenvalue problem
numerically. Our own interest stems from the discovery that an entirely different
approach, which we developed for arbitrary equilibrium vortex configurations
(Reinaud & Dritschel 2002), does not agree fully with the results of Meacham
(1992) for vertically standing ellipsoids. That our method agrees fully with the results
of Miyazaki et al. (1999), with many of the other results presented in Meacham
(1992), and with results obtained by integration of the full evolution equations using
independent numerical techniques, indicates that our method is not flawed; but
where our results differ is important, for instead of concluding that most vertically
standing ellipsoids are unstable unless they have a nearly circular cross-section and
are strongly oblate, we arrive at the conclusion that most such ellipsoids are stable
except for highly eccentric (horizontally deformed and prolate) vortices.

The next section describes the basic set-up of the problem. Section 3 reviews
our linear stability approach and presents a comprehensive picture of the stability
properties over a wide range of the parameter space. In § 4, numerical simulations
of the full QG equations are used to investigate the nonlinear consequences of the
instabilities found and to explicitly verify the linear stability in the parameter range
disputed. Finally, our conclusions are given in § 5.

2. Problem set-up
We consider an ellipsoid whose surface

x2

a2
+

y2

b2
+

z2

c2
= 1 (2.1)
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encloses a region of non-zero uniform PV, q = 1 without loss of generality, within
an unbounded fluid. Here a, b and c are the semi-axis lengths. The evolution of the
ellipsoid, under the QG approximation (cf. Gill 1982), is governed by the equations

Dq

Dt
= qt + u qx + v qy = 0, (2.2)

∇2ψ = ψxx + ψyy + ψzz = q, (2.3)

u = −ψy, v = ψx, (2.4)

(subscripts x, y, z and t denote partial derivatives). Equation (2.2) expresses the
material or pointwise conservation of PV on each isopycnal surface (z = constant to
leading order). Note that the flow is non-divergent. In (2.3), the height coordinate z

has been stretched by the factor N/f , where N is the buoyancy frequency and f is
the Coriolis frequency, both taken to be constant here. The resulting equations are
independent of f and N , but formally apply only when these frequencies are large
compared to the vertical and horizontal vorticity components, respectively.

Under the action of these dynamics, the ellipsoid (shape) rotates steadily about
the z-axis, at a rate Ω depending only on two independent aspect ratios, α = a/c,
β = b/c. As c is the vertical semi-axis length, while a and b are the horizontal lengths,
it proves convenient to work also with the horizontal aspect ratio λ= a/b and the
vertical aspect ratio µ = c/

√
ab. Using a result originally due to Laplace (1784), it can

be shown that

Ω = µ
λ−1RD(µ2, λ, λ−1) − λRD(µ2, λ−1, λ)

3(λ−1 − λ)
, (2.5)

where RD is the elliptic integral of the second kind,

RD(ξ, η, ζ ) = 3
2

∫ ∞

0

dt√
(t + ξ )(t + η)(t + ζ )3

. (2.6)

Figure 1 shows Ω(α, β) and Ω(λ, µ) over the range of parameters analysed in
§ 3 below. Ω increases with µ and λ, tending toward the two-dimensional limit of
λ/(1+λ)2 as µ → ∞. We may restrict attention to λ� 1 or α � β because of symmetry,
but α >β is included also to compare directly with the results presented by Meacham
(1992). An important point to note from figure 1 is the relative sizes of regions
in parameter space: for example, oblate vortices occupy the regions 0 < µ < 1 and
αβ > 1. Thus, in the (α, β) view, the parameter space is dominated by increasingly
oblate vortices.

3. Linear stability
3.1. Approach

Full details of the linear stability analysis are available in Reinaud & Dritschel (2002),
so here we present only a brief sketch of the approach. The analysis was devised to
treat general QG vortex equilibria consisting of one or more vortices, whose shapes
are not known analytically, but must be found numerically. The single ellipsoidal
vortex considered here is an exception, and it allows analytical progress to be made as
regards linear stability. However, the algebra involved in the linear stability calculation
is cumbersome and we have not been able to trace the apparent error in the analysis
of Meacham (1992).

The approach we have taken, while more costly numerically, is nevertheless more
straightforward. First, the ellipsoid is discretized into n� layers of equal thickness (40,
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Figure 1. Rotation rate Ω of a free ellipsoidal vortex as (a) a function of α and β , and
(b) as a function of λ and µ.

80 and 160 layers are used to check convergence). The layer thickness is 	z =2c/n�.
Within each layer, we place the edge of the discrete vortex on the elliptical curve

x2

a2
+

y2

b2
= r2

k , (3.1)

k = 1, 2, . . . , n�, where the rk are chosen so that the volume containing PV in this
layer, πr2

k 	z, is equal to the volume of the original ellipsoid within this layer. This
gives

r2
k = 1 − z̄2

k

c2
− 	z2

12c2
, (3.2)

where z̄k is the mean height of layer k.
Secondly, the ellipse is discretized into np points, with np = 3n� for high accuracy.

The points are spaced equally in θ , such that x = xk ≡ a rk cos θ and y = yk ≡ b rk sin θ .
Using the fact that the flow field inside the ellipsoid is linear (cf. McKiver & Dritschel
2003), and the condition that the undisturbed vortex remains steady in a frame
rotating at the rate −Ω , it follows that dθ/dt = Ωe,k is constant along each ellipse.
Ωe,k is the angular velocity, in elliptical coordinates, of a particle moving around
the ellipse in layer k (in general Ωe,k �= Ω , the rotation rate of the vortex shape).
The constancy of Ωe,k allows direct use of the linear disturbance equation, (7)
in Reinaud & Dritschel (2002). This equation describes the evolution of a small-
amplitude disturbance, expressed as an area displacement ηk(θ, t) of each elliptical
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contour in each layer. Specifically, the disturbed contours have the form

(x, y) = (xk, yk) + ηk

(∂yk/∂θ , −∂xk/∂θ)

(∂xk/∂θ)2 + (∂yk/∂θ)2
. (3.3)

Note that k corresponds to height, z = z̄k , and hence to a ‘latitude’ angle defined by
φ = sin−1(z̄k/c).

Seeking an eigenform ηk(θ, t) = eσ t η̂k(θ), we note that η̂k(θ) corresponds directly
to the surface displacement Λ(θ, φ) used by Meacham (1992), Miyazaki et al. (1999)
and Hashimoto, Shimonishi & Miyazaki (1999). In the present analysis, the η̂k are
expanded in a truncated Fourier series

η̂k(θ) =

M∑
m=1

Am cos mθ + Bm sinmθ, (3.4)

where M =5 normally. Doubling M alters the results negligibly since the unstable
modes primarily involve low m, in particular m =1 according to the previously cited
studies.

The main numerical cost is in evaluating the stability matrix. The eigenvalues σ

are found by standard numerical routines. Instability corresponds to Re(σ ) ≡ σr > 0.

3.2. Convergence

A number of isolated parameter values were checked for numerical convergence. To
be more thorough, we also checked an entire cross-section through parameter space,
at a fixed horizontal aspect ratio of λ= 1/2, and the results are presented here. We
varied the vertical aspect ratio µ from 0.1 to 4 in increments of 0.01, and performed
stability analyses using n� = 40, 80 and 160 layers.

The results are presented in figure 2, plotting the growth rate σr versus µ. As µ

increases, so does the number of unstable modes, reaching 8 by µ =4. The principal or
strongest instabilities correspond to the modes M2I, M3I, M4I and M5I of Meacham
(1992), the first two of which are described there. The secondary instability erupting
near µ = 1.8 (not labelled) corresponds to M3III of Meacham (1992), while the others
erupting near µ = 2.8 and µ = 3.8 appear to be higher-order modes (see below). The
growth rates show little sensitivity beyond 80 layers and agree with those of Meacham
(1992) as far as one can verify graphically (note Meacham scales his growth rates by
104). We know how to label the modes in figure 2 because the eigenfunctions shown in
figure 3 agree with figures 4 and 9 of Meacham (1992) (for modes M2I and M3I; he
does not show results for M4I and M5I). Note that these modes vary broadly in θ , and
are dominated by m = 1 in (3.4). The eigenfunction of the secondary instability M3III
also agrees with figure 13 of Meacham (1992). This, and the other two secondary
instabilities (not shown) are dominated by m = 2, and have a meridional structure
like M3I, M4I and M5I, respectively.

The small and diminishing mode seen at the bottom left of the plots in figure 2
is numerical – growth rates at µ = 0.7 are σr = 0.00379 for n� = 40, σr = 0.00254 for
n� = 80, and σr =0.00175 for n� = 160 – they decrease by a factor of approximately
0.68 on each doubling of n�. If we plot the eigenfunction for this mode at µ =0.7,
see figure 4(a), we find the M2II mode of Meacham (1992), see his figure 6. However,
according to his analysis, this mode is unstable with a growth rate of approximately
σr = 0.04 at µ = 0.375, and σr =0.015 at µ = 0.7. We believe this result is in error.

This mode, it turns out, corresponds to a rigid rotation of the original ellipsoid
through a small angle ν about the vertical axis, i.e. into another steady ellipsoid,
and hence is necessarily stable. A slight rotation of the ellipsoid generates new (x, y)
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Figure 2. Growth rate as a function of vertical aspect ratio µ for λ= 0.5, and for (a) n� = 40,
(b) n� = 80, and (c) n� = 160. A bold line is used for the most unstable mode. The principle
modes of instability, M2I . . . M5I, are labelled in (a).

coordinates given by x = xk cos ν − yk sin ν ≈ xk − νyk and y = yk cos ν + xk sin ν ≈ yk +
νxk . Substituting these into (3.3) and solving for ηk (by projecting the disturbance
onto (∂yk/∂θ , −∂xk/∂θ) when ν 	 1) leads to

ηk(θ, φ) = − 1
2
ν(b2 − a2) cos2 φ sin 2θ + O(ν2), (3.5)

where rk = cosφ has been used. This eigenfunction is plotted in figure 4(b) next to the
numerical eigenfunction in figure 4(a). The near perfect agreement further confirms
that Meacham’s mode M2II is spurious.

3.3. Full results

We next turn to the complete stability results over the two-dimensional parameter
space investigated. For these results, we have used n� = 80.
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Figure 3. Eigenfunctions (a) M2I, (b) M3I, (c) M4I and (d) M5I plotted versus longitude θ
(−π � θ � π) and latitude φ (−π/2 � φ � π/2), for λ= 0.5 and for the most unstable vertical
aspect ratios, µ= 1.04, 1.67, 2.31 and 2.93, respectively. The contour interval is 0.1 and the
eigenfunctions have unit r.m.s. values. Bold contours show positive or zero values.

(b)(a)

φ

Figure 4. (a) Eigenfunction M2II at µ= 0.7 and λ= 0.5, in the same format as the previous
figure. (b) The exact, analytical form of this eigenfunction (see text).
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Figure 5. Domain of instability in the parameter space (α, β): (a) contours of maximum
growth rate σr at the levels σr = 0.002, 0.01, 0.02, etc.; (b) σr shaded, with the darkness
proportional to growth rate (all growth rates greater than 0.1 are solid black); (c) the three
most unstable modes superposed; (d) the near marginal contours (at σr = 0.002) for the 20
most unstable modes. Tick marks in α and β are placed every 0.1 units, from 0.1 to 4. Double
length tick marks are placed at α and β =1, 2, 3 and 4.

The results are displayed in two ways, first in the format used by Meacham (1992),
with the growth rate σr expressed as a function of α = a/c and β = b/c, over the
ranges 0.1 � α � 4 and 0.1 � β � 4 (in increments of 	α =	β = 0.01), and second
with σr expressed as a function of λ= a/b and µ = c/

√
ab, over the ranges 0.2 � λ� 1

and 0.1 � µ � 3.4 (in increments of 	λ= 	µ = 0.01).
Figure 5 shows σr (α, β), in several formats. Figures 5(a) and 5(b) show the maximum

growth rate as contours and as a shaded diagram. Figure 5(c) shows the three most
unstable modes superposed and figure 5(d) shows the margin of stability for the
first 20 modes. A striking feature is the almost geometric sequence of shrinking
domains of stability as α ∼ β → 0, i.e. for increasingly prolate vortices. In fact, there
is an infinite sequence arising from a weak resonant instability of modes MjI,
j = 2, 3, 4, . . . , for vortices having a nearly circular horizontal cross-section at the
values α = β = 1, 0.59129658, 0.42623214, etc., see Miyazaki et al. (1999) and table 1.
Analogous parametric instabilities occur for a strained two-dimensional elliptical
vortex (Moore & Saffman 1971; Dritschel 1990) and for homogeneous (unstratified)
flow in a rigid ellipsoidal container (cf. Kerswell 2002 and references therein).
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j α µ

2 1.00000000 1.00000000
3 0.59129658 1.69119870
4 0.42623214 2.34613938
5 0.33565913 2.97921288
6 0.27781562 3.59950966
7 0.23743331 4.21170902
8 0.20753601 4.81844096
9 0.18445758 5.42130077

10 0.16607670 6.02131440

Table 1. Resonant values of α and µ= 1/α for a vortex of circular cross-section α = β or
λ= 1. Here, j is the primary mode index for modes MjI.

This way of depicting the domain of instability emphasizes oblate vortices (αβ > 1),
for which instability is largely confined to strongly deformed, horizontally elongated
vortices with α/β <∼ 0.42 or β/α>∼ 2.4, and squashes all prolate vortices into the lower
and left edges of the figure. An alternative view, plotting σr as a function of the
horizontal and vertical aspect ratios, λ and µ, shows that each primary mode MjI
occupies a roughly equal area of instability, see figure 6. The gravest mode, M2I,
is the least prolate and stems from the point λ= µ = 1 (a spherical vortex). This
mode, like the neutral M2II mode discussed above, can be shown to be an ellipsoidal
disturbance. The difference is that the M2I mode tilts the ellipsoid so that no axis
is vertical. This has been found independently by a much simpler stability analysis
restricted to ellipsoidal disturbances (McKiver 2003; Reinaud & Dritschel 2005). This
simple analysis gives a domain of instability for M2I that matches in detail the
domain found using the full analysis described above – see figure 6(c). Further, it also
finds the purely ellipsoidal mode M2II to be neutrally stable.

The nonlinear evolution of the M2I instability is discussed more fully below, but
it is important to remark here that this instability preserves the ellipsoidal shape of
the vortex, merely affecting the orientation of the vortex’s axes. While this gives rise
to a time-dependent motion of the vortex, with near recurrence of the initial state,
it does not change the basic vortex characteristics. In short, it is not an important
instability. All other modes are non-ellipsoidal, and may be expected to lead to
significant changes, as the results of the next section bear out. The main implication
of these results is that isolated oceanic vortices are stable over a much larger region of
parameter space than was argued by Meacham (1992). In particular, oblate vortices
are generally stable except when strongly horizontally elongated.

4. Nonlinear evolution
To investigate the nature of the instabilities described in the previous section, several

representative nonlinear simulations of the vortex evolution in the fully nonlinear QG
equations (2.2)–(2.4) were performed (see table 2). We used the CASL algorithm,
a numerical method combining contour dynamics with standard spectral methods
(Dritschel & Ambaum 1997). This is ideally suited, apart from the need to confine
the flow to a triply-periodic box, since it allows us to deal with discontinuities in PV
naturally and with minimal numerical dissipation. To reduce periodicity effects, we
ensure that the vortex occupies no more than a small fraction, between 0.014 and
0.16 % of the domain volume (following the guidelines in Reinaud & Dritschel 2002).
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λ µ n� δ̄E

1/3 1/3 80 0.0544
2/5 2/5 80 0.0533
4/9 4/9 80 0.00953
2/5 2/3 80 0.0648
1/2 1 80 0.0635
1/2 4/3 80 0.0627
1/2 2 120 0.0750
2/3 1 80 0.00565
2/3 1.6912 120 0.0932
2/3 2.3461 160 0.0785
2/3 2.9792 160 0.0621

Table 2. Summary of the nonlinear simulations, giving the initial ellipsoidal parameters λ and
µ, the number of layers spanning the vortex n�, and the mean departure of the vortex from
an ellipsoid δ̄E (see text) over 150 � t � 200.

(a) (b) (c) (d)

Figure 6. Domain of instability in the parameter space (λ, µ): (a) contours of maximum
growth rate σr at the levels σr = 0.002, 0.01, 0.02, etc.; (b) σr shaded, with the darkness
proportional to growth rate (all growth rates greater than 0.1 are solid black); (c) σr for the
purely ellipsoidal mode starting from σr = 0 (see text); (d) the three most unstable modes
superposed (the extra thick lines are the result of nonlinear simulations, described in § 4). Tick
marks in λ and µ are placed every 0.1 units, for λ ∈ [0.2, 1], and for µ ∈ [0.1, 3.4]. Double
length tick marks are placed at λ= 0.5 and 1, and at µ= 1, 2 and 3.



Stability of quasi-geostrophic ellipsoidal vortices 411

Each simulation uses a basic grid of 2563 for solving the Poisson equation, (2.3), and
for representing the velocity field; however, a grid four times finer in each direction is
used to represent the gridded PV obtained from the contours, for high accuracy (see
Dritschel & Ambaum 1997). Within the 1024 vertical layers available, in most cases
the vortex is taken to be 80 layers deep, but more layers are used for highly prolate
vortices to ensure adequate vertical resolution (see table 2). Other parameter settings
are standard: a large scale length L equal to the mean horizontal radius of the vortex,
a surgical scale equal to a twentieth of the basic grid size, and a time step 	t = T/40,
where T ≡ 4π/Q and Q is the uniform PV within the vortex. For the results shown
below, time t is scaled on T . All simulations extend to t =200 though most of the
action takes place early on, before t =100, and over a relatively short time period, 10
to 20 time units.

As a diagnostic, we compute the ellipsoidal moments of the evolving vortex. At
each time saved (every 0.5 units), the vortex (or the biggest vortex in cases where
it loses material) was fit to an ellipsoid having the same volume V , centre X , and
second moments Bk , k = 1, 2, . . . , 6, defined by

B1 =
5

V

∫ ∫ ∫
V

x2 dV, B2 =
5

V

∫ ∫ ∫
V

xy dV, B3 =
5

V

∫ ∫ ∫
V

xz dV,

B4 =
5

V

∫ ∫ ∫
V

y2 dV, B5 =
5

V

∫ ∫ ∫
V

yz dV, B6 =
5

V

∫ ∫ ∫
V

z2 dV,




(4.1)

where x, y, z are coordinates relative to the vortex centre (McKiver & Dritschel
2003; Dritschel, Reinaud & McKiver 2004). Initially, B1 = a2, B4 = b2, B6 = c2 and
B2 = B3 = B5 = 0. Tracking the evolution of these moments allows us to quantify the
changes to the basic vortex characteristics as a result of instability, in particular the
changes in λ and µ. To measure how good the fit to an ellipsoid is, the departure
ε of each point x = (x, y, z) on the surface of the vortex from the fitted ellipsoid is
computed, and its root mean square δE is found. The local departure ε is determined
by solving the cubic equation

x̃2

ε + a2
+

ỹ2

ε + b2
+

z̃2

ε + c2
= 1, (4.2)

where a, b and c are the vortex semi-axis lengths (a � b � c), and where x̃ are
centroid-relative coordinates in which ε =0 gives the boundary of the ellipsoid. In
general, there may be three real roots, and we choose the smallest (in magnitude) for
which ε � −a2. We note that ε spans a family of confocal ellipsoids (see Appendix
B of Dritschel et al. 2004), the innermost being an elliptic sheet when ε = −a2. The
mean square departure δ2

E is found by integrating ε2 with respect to arclength s

around each contour, then normalizing the result by the total arclength multiplied by
r2
E ≡ (a2 + b2 + c2)/3:

δ2
E =

n�∑
�=1

∮
C�

ε2ds

r2
E

n�∑
�=1

∮
C�

ds

. (4.3)

Above, C� is the contour belonging to the vortex in layer �. All contour integrations
(including those involved in the calculation of the second moments Bk after conversion
to contour integrals) are performed using two-point Gaussian quadrature between
contour nodes.
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(a) (b) (c)

Figure 7. Nonlinear evolution of a vortex, initially an ellipsoid with λ= 4/9 and µ= 4/9, at
times (a) t = 0, (b) 100 and (c) 200, viewed in orthographic perspective at an angle of 60◦ from
the vertical in the (y, z)-plane. In this and all subsequent images of vortex evolution, only the
contours in every third layer are shown (here, the vortex spans 80 layers).

We begin by examining oblate vortices (µ < 1), and contrast an M3I-unstable case
(λ= µ =2/5 = 0.4; σr = 0.0215) with a nearby stable case (λ= µ = 4/9 ≈ 0.444) marked
by the open circles in the lower part of figure 6(d). According to Meacham (1992),
the latter is unstable to M2II (with growth rate σr ≈ 0.036). The vortex evolutions (in
a frame rotating with the equilibrium rotation rate) are contrasted in figures 7 and 8.
The stable case remains virtually unchanged over the long duration of the simulation,
apart from a weak rotation induced by periodicity (the second moments change
by less than 4%, the angle between the minor axis and the vertical remains less
than 0.002◦, and δE < 0.0123). By contrast, the unstable case develops an ‘egg’ shape
characteristic of the linear eigenmode (cf. figure 3(a)) which subsequently distorts into
a large filament spun off from the vortex mid-section, leaving it with a nearly vertical
edge there. During this part of the instability, δE increases to over 1.57. The filament
then rolls up into a multitude of smaller vortices (together constituting 2.5 % of the
original vortex volume) which orbit the main vortex. Upon fitting the vortex to an
ellipsoid, we find that the shape characteristics vary little following the detachment
of the filament, see figure 9, and moreover that the vortex is approximated well by
an ellipsoid in this later period (δ̄E = 0.0533 over the last 50 time units). Similar
behaviour has been found for other unstable oblate vortices: the initial formation
of a single filament from the vortex mid-section followed by its detachment and the
consequent reduction of the width of the main vortex.

For all cases investigated, in fact, we have found that the original vortex settles
down to another roughly ellipsoidal steadily-rotating vortex (δ̄E < 0.1) with well-
defined values of λ and µ. Trajectories showing the evolution of these parameters are
drawn in figure 6(d) – see the thick bold curves originating from the small circles
and ending at the diamonds. In all cases, the vortex ends up in a stable part of the
parameter space, or in one which is weakly unstable (for λ close to 1), or in a part
which is unstable to ellipsoidal disturbances (mode M2I) only.

We turn next to the ellipsoidal instabilities, the parameter range unstable to M2I
(see figure 6(c)). Two cases are examined. In the first (λ= 2/3, µ = 1; σr = 0.0222)
the vortex is M2I-unstable only. The evolution of the vortex is shown in figure 10,
qualitatively confirming that the vortex remains ellipsoidal. In figure 6, the shape
of the vortex (λ, µ) does not evolve significantly, and in particular remains in the
M2I-unstable part of the parameter space. The vortex quasi-periodically tilts over
(the original vertical axis tilts through the (x, y)-plane), tumbles and nearly recovers
its initial condition. This is not destructive.

To quantify this behaviour, we compare it next with the purely ellipsoidal evolution,
computed using the ‘ellipsoidal model’ (McKiver & Dritschel 2003; Dritschel
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(a) (b)

(d)(c)

(e) ( f )

Figure 8. Nonlinear evolution of a vortex, initially an ellipsoid with λ= 2/5 and µ= 2/5,
from (a) to (f ) at times t = 0, 48, 56, 64, 72 and 100, viewed in the same perspective as in
figure 7.

t
0 100 200

0.7

0.5

0.3

µ

λ

Figure 9. Evolution of the ellipsoidal parameters λ and µ for the simulation shown in
figure 8.

et al. 2004). The ellipsoidal model exploits the fact that an isolated ellipsoid remains
an ellipsoid for all time under QG dynamics, governed by (2.2)–(2.4). The full CASL
numerical simulations introduce non-ellipsoidal disturbances by way of the vertical
discretization of the vortex into layers, so the comparison is not trivial.
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(a) (b) (c)

(f )(e)(d)

Figure 10. Nonlinear evolution of a vortex, initially an ellipsoid with λ= 2/3 and µ= 1, from
(a) to (f ) at times t = 0, 45, 54, 82, 91 and 100, viewed in the same perspective as in figure 7.

Under the purely ellipsoidal dynamics, the semi-axis lengths a, b, c of the vortex
remain constant (the vortex shape remains unchanged) as it tumbles in the M2I
instability. The axis orientations vary, yet the fluid motion is still horizontal or
layerwise two-dimensional. To check the constancy of a, b, c in the CASL simulation,
the vortex is fit to an ellipsoid at each time t to extract a(t), b(t), c(t). The discrepancy
from the initial ellipsoidal shape

[(a − a0)
2 + (b − b0)

2 + (c − c0)
2]1/2/

(
a2

0 + b2
0 + c2

0

)1/2
,

where a0 = a(0) etc, is never more than 0.017 (and decreases after t =100), and the
r.m.s. discrepancy over all time is 0.012, i.e. about 1 %.

A direct comparison between the CASL simulation and the ellipsoidal dynamics
has also been performed by comparing the second moments Bk , k =1, 2, . . . , 6 in
(4.1) diagnosed from the CASL simulation with those evolved under the ellipsoidal
dynamics. Since the instability grows from numerical noise, the comparison was
carried out starting from two later times near the onset of instability (the CASL-
diagnosed moments were used to initialize the ellipsoidal model). The evolution of
the initially zero moments B3 and B5 is shown in figure 11, for the CASL simulation
(figure 11a), and the ellipsoidal model starting from t = 30 (figure 11b) and t = 56
(figure 11c). Starting from t =30, the ellipsoidal model captures the first peak in the
moments to within 0.8 % of their magnitude, but fails to capture the second peak.
This is evidently due to extra noise in the CASL simulation that stimulates further
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Figure 11. Time evolution of the second-order ellipsoidal moments B3 and B5 for (a) the full
QG dynamics, and (b, c) the ellipsoidal model, (b) initialized with the moments obtained from
the full dynamics at t = 30 and (c) t = 56.

tumbling of the vortex. Starting from t =56, the ellipsoidal model now captures this
second peak with comparable accuracy, as well as the subsequent general behaviour.
Given the differences in the two models, and the strong nonlinearities of the evolution,
we cannot expect close agreement for all time.

Finally, in the CASL simulation, the departure of the vortex from an ellipsoid δE

is never greater than 0.00673, more than two orders of magnitude smaller than the
maximum δE found in simulations of other unstable vortices (see figure 12). Similarly,
small values of δE are found for the stable vortex λ= µ = 4/9 pictured in figure 7.

Consider next a vortex with a smaller horizontal aspect ratio λ= 1/2 (still for µ = 1),
which lies on the margin of stability for M3I and well within the M2I-unstable region
(with σr = 0.0350). The evolution is shown in figure 13. The vortex first tilts, tumbles
and recovers (nearly twice) before destabilizing to M3I. The long filament which forms
around t = 54 induces a large departure from an ellipsoidal shape (see figure 12b).
The smaller filament ejected around t =125 (now near the top of the vortex) also
induces a couple of local peaks in δE (the second peak comes from the brief re-
entrainment of the filament around t =130). Thereafter δE remains small and the
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Figure 12. Time evolution of the departure from an ellipsoidal shape δE for (a) λ= 2/3 and
µ= 1 (M2I unstable) and (b) λ= 1/2 and µ= 1 (M2I and marginally M3I unstable).

(a) (b)

(e) ( f )

(c)

(d)

Figure 13. Nonlinear evolution of a vortex, initially an ellipsoid with λ= 1/2 and µ= 1, from
(a) to (f ) at times t = 0, 35, 54, 58, 125 and 183, viewed in the same perspective as in figure 7.

vortex is approximated well by an ellipsoid. In this case, the vortex shape parameters
λ and µ evolve away from the M3I stability boundary, but end up in the M2I-unstable
part of the parameter space.
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Figure 14. Nonlinear evolution of a vortex, initially an ellipsoid with λ=2/3 and µ= 1.6912,
from left to right at times t = 0, 50, 55, 67, 80 and 200, viewed in the same perspective as in
figure 7.

Figure 15. Nonlinear evolution of a vortex, initially an ellipsoid with λ=2/3 and µ= 2.3461,
from left to right at times t = 0, 24, 34, 45, 60 and 200, viewed in the same perspective as in
figure 7.

As we consider increasingly prolate vortices, the instabilities tend only to tear off
the top and bottom of the vortex, thereby decreasing µ (and increasing λ toward
1). For example, the case in the middle-part of the M3I instability region (λ= 2/3,
µ = 1.6912; σr = 0.0271; see figure 6) destabilizes by throwing off filaments at the top
and bottom of the vortex (in phase), see figure 14. The instability first makes the
vortex mid-section more circular, and, in order to conserve angular impulse

J =

∫∫∫
(x2 + y2)dV =

1

5
V (B1 + B4), (4.4)

the upper and lower parts of the vortex (which have a smaller cross-sectional area)
must drift away from the z-axis. Advection then twists these extremities into spiralling
filaments which eventually detach from the main vortex.

Similar behaviour is exhibited in the case of the M4I instability (λ= 2/3, µ = 2.3461;
σr = 0.0289) shown in figure 15. A qualitative difference is that the filaments are ejected
180◦ out of phase, consistent with the eigenfunction shown in figure 3(b). The M5I
instability (λ= 2/3, µ = 2.9792; σr = 0.0299) – see figure 16 – is again like M3I, and
so on. This appears to be a simple consequence of the respective symmetries of the
odd and even modes, see figure 3. Modes MjI with j odd are all symmetric in z,
while modes with j even are all anti-symmetric.

The key point is that all of these instabilities result in roughly ellipsoidal stable
vortices (stable, that is, to non-ellipsoidal disturbances). The true domain of stability,
if we exclude the M2I instability, is much wider than was previously thought –
significantly deformed vortices having µ =O(1) or less are robust, not only to linear
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Figure 16. Nonlinear evolution of a vortex, initially an ellipsoid with λ= 2/3 and µ= 2.9792,
from left to right at times t = 0, 31, 40, 47, 60 and 179, viewed in the same perspective as in
figure 7.
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Figure 17. The stability boundary λ= λc(µ) for non-ellipsoidal disturbances, and for vortices
having a height–width aspect ratio µ � 1.67.

perturbations, but apparently also to weakly nonlinear ones. Some more prolate
vortices are stable as well, but the windows of stability shrink with increasing µ and
stability is found only close to λ= 1. The chief domain of stability, however, is found
for µ < 1.6912, and is bounded by the margin of stability for M3I, i.e. for λ> λc(µ) –
see figure 17. Here, we have determined λc by fitting σ 2

r to a quadratic polynomial in
λ using three successive unstable values of λ near the margin of stability.

5. Conclusions
We have revisited a basic problem in the stability of geophysical vortices in a

rotating, stratified fluid. In the original study, Meacham (1992) concluded that a wide
class of vortices, of ellipsoidal shape, are unstable. Stability was found only for vortices
of nearly circular horizontal cross-section or of small height to mean-width aspect
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ratio (after the usual stretching of the vertical coordinate z by N/f , the buoyancy to
Coriolis frequency ratio).

Here, by an alternative and direct stability analysis, we have found that the region
of stability is much wider than previously thought, with stability existing over a
wide range of commonly observed vortex shapes (Reinaud et al. 2003). In particular,
vortices of order unity height to mean-width aspect ratio µ are stable, in the sense that
they preserve their ellipsoidal shape, unless the horizontal aspect ratio λ is significantly
smaller than unity. There exists a range of parameters ‘unstable’ purely to ellipsoidal
disturbances, but then the vortex simply tumbles while preserving its shape and axis
lengths. Beyond this domain, there exist completely linearly stable domains, for both
prolate µ > 1 and oblate µ < 1 vortices, previously found to be unstable. The spurious
mode turns out to be just the difference between two equilibrium ellipsoids of slightly
different λ.

These linear results have been backed up by a series of numerical simulations of
the nonlinear quasi-geostrophic governing equations. The simulations confirm our
linear stability results, in particular the newly found stable parameter regimes, and
illustrate the range of behaviour occurring for unstable vortices to late times. In
every case examined, despite significant ejections of material from the vortex and
associated complex nonlinear behaviour, the main vortex returns and remains close
to an evidently stable ellipsoidal form, albeit not always a steadily rotating one.
Moreover, in each case, the main vortex loses no more than a few per cent of its
volume. These instabilities are not particularly destructive, and when they do occur,
they adjust the vortex to a new shape which can persist for long times.

Several avenues of further work present themselves. First, the class of tilted
spheroidal vortices, examined by Miyazaki et al. (1999), exhibits similar linear
instabilities; to date the nonlinear consequences of these instabilities have not been
explored. However, it is likely that, as here, vortices will adjust to another near-
ellipsoidal form which can persist for long times. Secondly, tilted ellipsoidal vortices
are exact time-dependent solutions of the quasi-geostrophic equations (Meacham
1992), but for unequal axis lengths they nutate as well as rotate, generally at different
frequencies (nearly all irrationally related). It may be of interest to examine their
stability with respect to non-ellipsoidal disturbances by a generalized Floquet analysis.
Additional classes of ellipsoidal equilibria exist when a background straining flow is
included. Their linear stability has been examined recently by Hashimoto et al. (1999),
for two special two-dimensional straining flows (pure deformation and pure linear
shear), and by McKiver (2003), in the general case (but on a sheet of the parameter
space joined to spheroids in the limit of zero strain). The latter study concluded
that non-ellipsoidal instabilities are extremely rare; however, the parameter space
investigated does not connect with the freely rotating ellipsoids studied here (there is
a fold in the parameter space at a critical strain value). Further work is required to
understand the stability of this other sheet of solutions in parameter space (a part of
which has been explored by Hashimoto et al. 1999).

The quasi-geostrophic model used here is the simplest possible and the only one
known to admit exact ellipsoidal vortex solutions. This model is applicable to oceanic
dynamics and, to a degree, atmospheric dynamics. However, the compressibility of
the atmosphere, with density ρ decaying almost exponentially with height as e−z/H

(here H ≈ 7 km is the ‘scale height’), changes the inversion operator in (2.3) to

∇2ψ − 1

H
ψz = q,
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and this modifies the behaviour of vortices of height scales comparable to or greater
than H (such vortices are widespread in the atmosphere). In particular, ellipsoidal
vortices of uniform potential vorticity q are no longer exact solutions of the equations;
preliminary results indicate that a vertical asymmetry appears in the analogous
steadily rotating vortices, with the top of the vortex becoming more circular and the
bottom becoming more eccentric (Scott & Dritschel 2005). This difference increases
with total vortex depth, keeping H fixed, and is significant even for a vortex depth of
H/4. A full exploration of the effects of compressibility requires finding the equilibria
numerically, but assessing their stability appears to involve a straightforward extension
of the methods used here.

Support for this research has come from the UK Natural Environment Research
Council (grant NER/B/S/2002/00567).
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