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We present a scaling theory for unforced inviscid two-dimensional turbulence. Our model unifies
existing spatial and temporal scaling theories. The theory is based on a self-similar distribution of vortices
of different sizes A. Our model uniquely determines the spatial and temporal scaling of the associated
vortex number density which allows the determination of the energy spectra and the vortex distributions.
We find that the vortex number density scales as n�A; t� � t�2=3=A, which implies an energy spectrum
E � k�5, significantly steeper than the classical Batchelor-Kraichnan scaling. High-resolution numerical
simulations corroborate the model.
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There has been renewed interest in two-dimensional
turbulence in recent years, motivated by its applicability
as a simple model for large-scale geophysical flows.
Earth’s atmosphere has an approximate two-dimensional
structure, as the troposphere is only approximately 10 km
deep, while the horizontal extension is more than
40 000 km. Moreover, the fast rotation of Earth leads to a
vertical alignment enhancing the two-dimensional charac-
ter of large-scale dynamics. As a result, two-dimensional
turbulence has been regarded as the simplest model for
understanding some of the mechanisms in turbulent trans-
port in atmospheric and oceanic flows.

In the seminal work by Batchelor [1] and Kraichnan
[2,3], a spectral approach, local in wave number space, was
adopted to deduce a k�3 scaling of the energy spectrum in
the inertial range, which is dominated by nonlinear trans-
port and is not directly affected by viscosity. According to
their theory, two-dimensional turbulence is characterized
by an inverse energy cascade primarily towards larger
scales, a property first noted by Onsager [4], and a direct
enstrophy cascade primarily towards smaller scales [5,6].
There is increasing numerical evidence, however, that the
actual spectrum is significantly steeper than the celebrated
Batchelor-Kraichnan spectrum; see, for example, [7–9]. It
has been argued that vortex dynamics and coherent struc-
tures, which are local in physical space and therefore
nonlocal in spectral space, are responsible for the devia-
tions from the Batchelor-Kraichnan theory. Most of the
energy in a turbulent flow is contained in vortices which
spontaneously form out of initial random fields.

In a series of papers [7,10–12], several scaling theories
have been proposed which take into account the dynamical
importance of vortices. In Refs. [7,10], the algebraic scal-
ing of the energy spectrum was linked to an emerging
distribution of vortices with area A having an algebraic
number density n�A� � A�p. (The area A of a vortex may
be defined as the size of a contiguous region having vor-
ticity, e.g., exceeding the rms vorticity over the domain.)
The exponent p was determined by fitting to numerical
simulations. A temporal scaling of the vortex number

density was proposed in Refs. [11,12]. Assuming that, in
addition to energy, the maximal vorticity during vortex
interactions is conserved, dimensional arguments lead to
n� t��. The analysis, however, assumes vortices of one
particular size and does not predict the value of the scaling
exponent �. Here we present a model which unifies the
spatial and temporal scaling theories and, moreover, deter-
mines the vortex number density as n�A� � t�2=3=A on
using self-similarity. Our theory is supported by high-
resolution numerical simulations.

We begin by writing the total conserved enstrophy per
unit area as

 Q �
Z 1

0
��k�dk �

Z 1
0
k2E�k�dk; (1)

where ��k� and E�k� are the enstrophy and energy spectra
at wave number k. Considering a population of vortices
with a vortex number density n�A� of vortices with area A,
we write

 Qv �
1

2As

Z As

0
!2
vAn�A�dA; (2)

where Qv is the part of Q associated with the vortices, !v
is the vorticity magnitude, and As is an arbitrary domain
size. We now assume that most of the energy is contained
within the vortices and that the vorticity of each vortex !v
does not vary for vortices with different areas A.
Identifying A� k�2 so that dA� k�3dk, comparison of
(1) and (2) gives the energy spectrum

 E �k� �!2
vA�1

s n�A�k�7: (3)

The vortex number density is assumed to be of the form
n�A� � A�p implying E � k�7�2p. Up to here, our analysis
is equivalent to the one performed in Ref. [10]. Therein, p
is determined by numerically fitting the energy spectrum
(3) for a prescribed vortex distribution. Note that the
classical Batchelor-Kraichnan spectrum is recovered for
p � 2. In the following, however, we show that only
n�A� � A�1 allows for a self-similar vortex distribution.
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The energy spectrum associated with a self-similar vortex
distribution then scales as

 E �k� � k�5: (4)

To study scale invariance of a vortex distribution, we
first define the area fraction of an arbitrary area As occu-
pied by vortices

 fv �
1

As

Z Amax

0
An�A�dA:

Here Amax is the maximal vortex size in As. Each vortex
with area A occupies a zone the area of which is A=fv. The
sum of all zones is equal to the total area As. Now consider
a subdomain A0 < Amax which is populated by nonoverlap-
ping vortices with areas A � A0. Arguably, these vortices
typically populate an area Arem which is not already occu-
pied by zones of vortices with area A > A0, since strong
shear surrounding these vortices would tear apart smaller
vortices nearby, as explicitly demonstrated in Ref. [13].
This leftover area is just

 Arem �
1

fv

Z A0

0
An�A�dA:

Self-similarity means that the ratio A0=Arem must be inde-
pendent of the subdomain A0. The only choice for n�A�
with this property is

 n�A� �
c
A
: (5)

Note that for such a density the number of vortices between
�A0 and A0, �� 1, is

 Nv �
Z A0

�A0

c
A
dA � c ln��1; (6)

which is independent of the subdomain A0, again illustrat-
ing the self-similarity associated with the special form of
the vortex number density (5).

Next we study the temporal behavior of the number
density n�A; t� � c�t�=A. We generalize the approach of
Ref. [11]; instead of a gas of equal-sized vortices, we
consider a distribution of vortices with a maximum vortex
radius a�t� �

����������
Amax

p
. The total energy scales as

 E �
1

2As

Z
juj2dxdy�

1

2As

Z Amax

0
!2
vA

2n�A�dA� ca4;

where we again assume that !v does not vary with the
vortex area A. Conservation of energy then implies c�
a�4. The scaling of the enstrophy and the area fraction,
respectively, can then be obtained as

 Qv�t� � a�2 and fv�t� � a�2: (7)

The temporal behavior of the maximal vortex radius a�t�
is determined by the rate of enstrophy transfer from vorti-
ces to filaments dQv=dt. This transfer occurs through
destructive vortex interactions. Vortex interactions typi-
cally involve three vortices, e.g., two vortices brought
together by a third. The simplest model of this, and statis-
tically the most common situation, is the interaction of a
vortex dipole with a third, isolated vortex [14]. This inter-
action can be destructive and results in the transfer of

enstrophy from the vortex population to small-scale fila-
ments. Self-similarity now implies that the enstrophy at
any scale !2

vAn�A�dA decays at a rate which is indepen-
dent of scale. We therefore equate

 

dQv

dt
��pcol

Qv

Tint
; (8)

where pcol is the collision probability of a dipole with
smaller vortices and Tint is the time for a dipole to travel
a characteristic intervortex distance r�t�. Since the collision
probability is proportional to the vortex number density, we
have pcol � c� a

�4. Using (6), the characteristic intervor-
tex distance r�t� of vortices with sizes between�A0 and A0

is given by

 r� �A0=Nv�
1=2 � �A0=c�

1=2 � A1=2
0 a2: (9)

The typical time Tint, which measures the time a dipole
of area A0 and width proportional to A1=2

0 travels a distance
r, can be estimated as

 Tint �
r
Udip

; with Udip �
!vA0

A1=2
0

� A1=2
0 (10)

being a characteristic dipole velocity. Note that this implies
Tint � a

2, independent of A0 as required by self-similarity.
Substituting (9) and (10) into (8), we obtain a differential
equation for the size of the largest vortices a�3da=dt�
a�8, which implies a�t� � t1=6. Together with (5), this
uniquely determines the vortex number density

 n�A; t� �
t�2=3

A
: (11)

Furthermore, via (7) we can determine the temporal
scaling behavior of the enstrophy Qv�t� and the area frac-
tion fv�t� as

 Qv�t� � t
�1=3 and fv�t� � t

�1=3; (12)

respectively.
We note that the temporal decay rate � of the vortex

number density of � � 2=3 is consistent with previous
numerical estimates [8,10–12,15]. Our approach of con-
sidering a self-similar vortex distribution allows a unique
determination of the spatial and temporal scaling behavior
of the vortex density n�A; t� and subsequently of the total
vortex enstrophy Qv�t� and area fraction occupied by
vortices fv�t�.

To corroborate our model, ensemble statistics were
determined from 20 high-resolution numerical simula-
tions carried out using the contour-advective semi-
Lagrangian (CASL) algorithm, a hybrid contour dynam-
ics/spectral method capable of accurately modeling an
especially wide range of scales [16], with great care taken
to minimize the numerical dissipation over long integration
times (details will be published elsewhere). Each simula-
tion began with a random-phased vorticity distribution
with energy spectrum E�k� � �k3 exp��2k2=k2

0�, with
k0 � 32 and � chosen so that E � 1=2. Then Q�0� �
k2

0=2. In time, numerical dissipation strongly reduces Q,
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whereas E remains conserved to within a few percent,
consistent with previous studies. Importantly, the numeri-
cal dissipation here acts only on thin vorticity filaments,
not on sharp vorticity gradients, thereby preserving many
small-scale vortices.

Each of the 20 simulations differed only in a random
number seed. Each was run for 160 ‘‘eddy rotation peri-
ods’’ Teddy 	 4�=!rms�0�, where !rms�0� �

�������������
2Q�0�

p
� k0

is the initial rms vorticity. Time is measured in units of
Teddy. The most intense vortices rotate 4–5 times in one
such unit of time.

The simulations use a basic 512
 512 ‘‘inversion grid’’
for computing the velocity field, while a much finer reso-
lution is used to represent the vorticity, as contours, down
to scales of a twentieth of the basic grid size [16]. This
results in an accurate representation of the vorticity dy-
namics down to the scale of numerical dissipation. The
vorticity evolution in one representative simulation at early
and late times is shown in Fig. 1.

To test the above scaling theory, coherent vortices were
identified by computing contiguous regions of vorticity
with j!j>!rms�t� and aspect ratio � < 2�

���
3
p
� 3:73.

Doubling or halving these thresholds has little effect on the
following results. In Fig. 2, we show the full vorticity field
of one representative simulation at 16 eddy rotation periods
and its corresponding coherent part as defined above.

The vortex area A and the mean vorticity !v associated
with the coherent vortices can then be calculated as A �

�2=� and !v � �=�, respectively, with enstrophy of a
coherent vortex � and circulation of a coherent vortex �.
The vortex number density n�A� and the mean vorticity !v
are ensemble-averaged over the 20 realizations.

The normalized number density ~n � n�A�=Nv is shown
in Fig. 3 (left) time-averaged over several intervals. The
late time density clearly scales as n�A� � 1=A over 3 dec-
ades in area, consistent with the prediction of our self-
similar theory. On the right in Fig. 3, we show !v�A� over
the same time intervals. There is no systematic dependence
on A, and !2

v varies by only 1 order of magnitude over
4 orders of magnitude in A and much less than this for
�4< log�A�<�1, where arguably the flow is better re-
solved. This dependence on A is extremely weak, justify-
ing the assumption !v � const.

In Fig. 4, the enstrophy spectrum ��k�, time-averaged
over the interval of 100–160 eddy rotation periods (thin
line), is compared with its coherent part obtained from
retaining only the coherent vortices. Figure 4 clearly illus-
trates that the steeper-than-Batchelor-Kraichnan scaling of
the spectra at high wave numbers is associated with the
presence of vortices, and the shallow part can be attributed
to incoherent, predominantly filamentary vorticity. In time
(not shown), this incoherent k�1 tail is swept to ever higher
k, leaving behind a widening steeper spectrum associated
with the coherent vortices. This steeper spectrum has a
slope close to k�3, corresponding to a 1=A distribution of
vortices. The actual slope is slightly shallower, possibly
due to the contribution of vorticity discontinuities at the
coherent vortex edges (an artifact of our vortex identifica-
tion method). In the corresponding energy spectrum
E�k� � ��k�=k2, we may therefore associate the steep
k�5 part of the energy spectrum with coherent vortices
and the shallow k�3 part with filaments.

FIG. 1. Vorticity field at t � 4 (left) and t � 160 (right) in one
representative simulation. A linear gray scale is used, with the
highest positive vorticity being white. Only 1=16 of the domain
is shown.

FIG. 2. Full vorticity field !�x; t � 16� (left) and its corre-
sponding coherent part (right). Only 1=16 of the domain is
shown.

FIG. 3. Ensemble-averaged normalized number density (left)
and mean vorticity !v (right) versus area, in logarithmic scales;
t � 0 is shown by a dashed line with diamonds, 20 � t � 30
(averaged) is shown by a thin line with squares, and 100 � t �
160 (averaged) is shown by a bold line with triangles.

PRL 101, 094501 (2008) P H Y S I C A L R E V I E W L E T T E R S
week ending

29 AUGUST 2008

094501-3



We turn finally to the temporal decay. Figure 5 shows the
decay of total enstrophy Q�t� [17] and its coherent part
Qv�t� (ensemble-averaged), using logarithmic scales (simi-
lar results have been found for the area fraction fv). The
decay of Qv�t� is not a numerical artifact but a genuine
feature of the turbulent flow evolution. This decay is the
result of vortex interactions, generating incoherent fila-
mentary debris which cascade to ever finer scales. At late
times, both curves approach a t�1=3 decay, consistent with
the prediction of our theory and with previous numerical
results [8,12,15]. Most remarkably, Qv�t� closely follows a
t�1=3 decay for the last 90% of the flow evolution; i.e.,
coherent vortex interactions dominate the long term be-
havior of enstrophy—crucial for our self-similarity
assumption.

In summary, this Letter presents a scaling theory for
unforced inviscid two-dimensional turbulence based on a
self-similar vortex distribution. The theory predicts a
steeper-than-Batchelor-Kraichnan scaling for the energy
spectrum at large wave numbers with E�k� � k�5 due to
coherent vortices and a temporal scaling of vortex ens-
trophy Qv�t� � t�1=3. The model is consistent with and
extends previous spatial [7,10] and temporal [11,12] scal-

ing theories and numerical simulations [8,10–12,15]. This
is arguably the first consistent turbulence model which
deduces all free parameters from just a few assumptions
without any empirical fitting to data. The model is con-
firmed by high-resolution CASL simulations carried out to
very long times. In particular, the simulations and the
associated vortex ensemble statistics underscore the im-
portance of vortices for the steepening of the energy spec-
tra. The decay of coherent enstrophy implies that
essentially all of the enstrophy transfers from vortices to
filaments, via vortex interactions, as t! 1 [18,19]. The
enstrophy accumulates within a k�1 filamentary tail which
spreads to k! 1. In a subsequent paper [20], we discuss
the implications of this enstrophy cascade. One key result,
however, can be immediately deduced: the t1=6 growth of
the largest vortices predicted here implies a correspond-
ingly slow, but inevitable, inverse energy cascade with an
energy flux diminishing like t�5=6.
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FIG. 4. Ensemble- and time-averaged (100 � t � 160) enstro-
phy spectrum (thin line) and its coherent counterpart (bold line)
versus wave number k, in logarithmic scales. Various slopes are
indicated.

FIG. 5. Temporal decay of total (resolved) enstrophy Q�t� (top
curve) and coherent vortex enstrophy Qv�t� (bottom curve), in
logarithmic scales.
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