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We here compare two numerical algorithms in a simple test case involving the simulation of two-dimensional freely-
decaying turbulence. The first is a standard pseudo-spectral algorithm, as has been widely used in studies of this problem.
The second is a less well known hybrid Eulerian–Lagrangian algorithm based on contour dynamics. The comparison verifies
the near equivalence, in detail, of the two algorithms at early times. At later times, significant advantages of the second algo-
rithm become clear, in particular the ability to achieve a much higher effective Reynolds number at a negligible fraction of
the computational effort. Specifically, a comparable simulation using the pseudo-spectral algorithm would take Oð108Þ times
more computer power.

We solve the two-dimensional Navier–Stokes equation in vorticity form
xt þ Jðw;xÞ ¼ mr2x; x ¼ r2w ð1Þ
in a doubly-periodic domain and using a simple random initial condition, as specified below. Here x is the vorticity, w is the
streamfunction, J is the Jacobean and m is the viscosity coefficient.

The initial conditions for (1) are constructed by specifying an initial energy spectrum of the form EðkÞ ¼ ak8 exp
½�8pðk=8Þ2�, where k ¼ jkj is the wavenumber, with random phases for all Fourier coefficients. This EðkÞ is peaked at
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
32=p

p
� 3:2 and is more than 1036 times smaller by k ¼ 32. The coefficient a is chosen to give unit r.m.s. velocity, or

energy per unit area 1
2 hjrwj2i ¼ 1

2. The maximum initial velocity is about 2:3, while the peak vorticity jxjmax ¼ 11:942 and
the (initial) r.m.s. vorticity xrms ¼ 3:541.

First, we solve (1) using a standard pseudo-spectral algorithm and a fourth-order Runga–Kutta time scheme. Approximate
de-aliasing is achieved using a spectral filter following [6], with parameters as specified in [5], hereafter DTS. The viscous
term is treated exactly by means of an integrating factor. We perform a series of integrations at resolutions N ¼ 512;
1024;2048;4096; and 8192, where N is the number of grid points in x and y. In each case the time step is chosen to be
0:0025ð512=NÞ. This time step is less than half the CFL time step required for stability at the initial time and is verified a
posteriori to never exceed 75% of the CFL time step during the flow evolution. In tests using resolutions up to N ¼ 2048, halv-
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ing the time step had no measurable impact on solution accuracy. A viscosity coefficient m ¼ 4p=ð3N=8Þ2 is chosen based on
the initial vorticity to ensure adequate dissipation of enstrophy Q � 1

2 hx2i at high wavenumbers.
Second, we perform a single integration of (1) with m ¼ 0 using the Contour–Advective Semi-Lagrangian (CASL) algorithm

[3]. The CASL algorithm does not use any explicit viscosity, but removes vorticity filaments below the grid scale by a method
called ‘‘contour surgery” [2]. The algorithm represents the vorticity field by a set of contours across which the vorticity jumps
discontinuously by a fixed amount Dx, which can be chosen according to the desired level of accuracy. The algorithm rep-
resents the velocity field on a conventional periodic grid and this velocity is interpolated to the contour nodes using a stan-
dard bi-linear interpolation. The contours are advected using a fourth-order Runga–Kutta time scheme. The velocity field is
obtained from the contours by a fast-filling routine and inversion of x ¼ r2w in spectral space. We have used the following
standard numerical parameters in the integration reported: a basic grid size of 512� 512 (used for carrying out the inversion
and representing the gridded velocity field), a grid 4 times finer in each direction for fast-filling, 80 contour levels with vor-
ticity jump Dx ¼ 0:251328 spanning the entire range of x, a surgical scale d ¼ p=5120 equal to a twentieth of the inversion
grid scale, a large-scale length L ¼ 1 and a dimensionless node separation parameter l ¼ 2

ffiffiffiffiffiffiffiffi
d=L

p
¼ 0:0495416 for represent-

ing the contours, and a time step Dt ¼ 0:025. We have performed two additional integrations using values of Dx half and
double of this value and have verified that the results obtained are insensitive to this choice.

The pseudo-spectral integrations are described fully in DTS; here we focus on the comparison between the two numerical
methods. Both qualitative (visual) and quantitative comparisons are made. Fig. 1 shows the vorticity field x in the full do-
main at t ¼ 5 (top) and at t ¼ 9 (bottom) for the 81922 pseudo-spectral integration (left) and the CASL integration (right). At
both these times, the fields match closely. The agreement is astonishingly close at t ¼ 5, despite the highly nonlinear dynam-
ics and the complex vorticity structures that have developed by this time. Indeed at t ¼ 5 it is difficult to detect any differ-
ences in the two vorticity fields at the level of these plots.

The level of agreement is demonstrated further by a zoom into 1=64th of the domain shown in Fig. 2 (top row for t ¼ 5
and bottom row for t ¼ 9). Again at t ¼ 5 the two integrations can be seen to agree extremely well down to the smallest-scale
structures of the flow. Differences can be seen, for example in the downward turning lip to the left of the central dark oval,
which is slightly more diffuse in the pseudo-spectral integration, a direct effect of viscosity. In the CASL integration on the
other hand, this structure has evolved inviscidly, since the scales involved are still well above the surgical scale d. It is worth
Fig. 1. Full domain comparison of the vorticity field in the 81922 pseudo-spectral integration (left panels) and in the CASL integration (right panels) at time
t ¼ 5 (upper panels) and at t ¼ 9 (lower panels). A linear grey scale is used between �10 < x < 10 (black being most negative) and values with jxj > 10 are
saturated to improve contrast.



Fig. 2. Magnification of 1=64th of the domain shown in Fig. 1.
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noting that this close agreement is achieved despite the relatively coarse discretisation of vorticity levels in the CASL algo-
rithm (80 levels across the full vorticity range). The discrete levels are just visible in Fig. 2 (top right), particularly in the lar-
ger regions of weak vorticity gradient. More levels can be used at a modest additional cost proportional to the extra number
of contour nodes required [3,4].

Time t ¼ 9 corresponds to the time of peak complexity, or, equivalently, the time of maximum enstrophy dissipation
� 1

2 dhx2i=dt ¼ � _Q , for the 81922 pseudo-spectral integration. The complexity of the vorticity field increases until this time
due to repeated stretching and folding by the turbulent flow and then decreases as the (cumulative) enstrophy dissipation
increases (see DTS for full details and also Fig. 5 below). The complexity is clear in both the full fields and in the magnifica-
tions (lower panels in Figs. 1 and 2). At this later time there is also close agreement in the general features of the two inte-
grations, but now there are also significant differences.
Fig. 3. Magnification of 1=64th of the domain at t ¼ 15, from the 81922 pseudo-spectral integration (left) and from the CASL integration (right).



Fig. 4. The scaled enstrophy spectrum Xðk; tÞ ln Re=hx2i at the time of peak enstrophy dissipation and for all of the integrations performed. The CASL results
are in bold.
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One inevitable difference arises from the extreme nonlinear and chaotic nature of the flow, which will always lead to
divergence of the two solutions with time. Differences associated with such nonlinearity are typically seen as differences
in the position or shape of larger-scale structures, such as the coherent light region on the extreme left hand edge in
Fig. 1, or the upper left corner of Fig. 2 (lower panels). This is an inherent limitation imposed by the characteristic behaviour
of turbulent flow.

A second difference arises from the viscous dissipation in the pseudo-spectral integration. This can be seen most clearly in
the highly filamentary regions of Fig. 2. Although the pseudo-spectral integration is capable of capturing an impressive de-
gree of filamentation at this resolution, it is nevertheless visibly more diffuse than the CASL integration. In the former case,
filament amplitudes at the smallest scales are strongly reduced by viscosity. By contrast, in the latter case, provided a fila-
ment keeps a transverse scale larger than the surgical scale d, it will remain completely unaffected by surgery.

In the CASL integration, the peak enstrophy dissipation � _Q occurs just after t ¼ 15, somewhat later than in the 81922

pseudo-spectral integration. At this time, the vorticity field has attained a degree of complexity on which surgery becomes
significant. By this time the pseudo-spectral integration at 81922 is in a period of strong decay. The vorticity fields for each
case at t ¼ 15 are shown in Fig. 3, again with a magnification showing 1=64th of the domain. Most of the structure present in
the pseudo-spectral integration at t ¼ 9 has been dissipated, while that in the CASL integration has increased further in
complexity.
Fig. 5. Enstrophy dissipation � _Q versus time t (left) and scaled enstrophy dissipation � _Qða0 þ a1 ln ReÞ versus scaled time t=ða0 þ a1 ln ReÞ (right), for all of
the integrations performed. The CASL results are in bold. Note, a0 ¼ �0:440 and a1 ¼ 0:300 (see DTS).



D.G. Dritschel, R.K. Scott / Journal of Computational Physics 228 (2009) 2707–2711 2711
The (substantially) weaker dissipation in the CASL integration is the result of being able to retain enstrophy to much finer
scales. This is seen most directly in Fig. 4, which shows the enstrophy spectrum Xðk; tÞ at the time of peak enstrophy dissi-
pation � _Q compared amongst all cases after rescaling as in DTS (with Reynolds number as defined below). At small k (large
scales) the spectra converge, while at large k the CASL spectrum extends significantly further with an approximate k�1 scal-
ing, consistent with Batchelor’s (1969) theory of 2D turbulence [1] (but see DTS & Refs. for why Batchelor’s theory is
inconsistent).

Finally, we compare the evolution of enstrophy dissipation � _Q among all integrations in Fig. 5 (left) and the Reynolds
number rescaled evolution �f ðReÞ _Q vs t=f ðReÞ in Fig. 5 (right). Here, we have used f ðReÞ ¼ a0 þ a1 ln Re which, from a linear
least-squares fit, best collapses the pseudo-spectral data (see DTS). For these data, the Reynolds number is defined by
Re � hjrwj2i=mxrms, which for the 81922 integration is 2:12� 105. Applying the same scaling to the CASL data, specifically
equating the peak enstrophy dissipation to 1=f ðReÞ, we obtain an effective Reynolds number of approximately 3:80� 107.
A pseudo-spectral integration of comparable Reynolds number would require a grid of approximately 1000002, since the
maximum Reynolds number typically scales with the square of the grid resolution.

Note, we are not claiming that the CASL integration generates a solution of the Navier–Stokes equations with finite vis-
cosity. The main point is rather that the CASL integration produces the same enstrophy dissipation as the Navier–Stokes
equations, but at a much higher Reynolds number than can be presently achieved with other methods.

We conclude with a comment on the cost of carrying out these integrations. The CASL integration required 5.34 h on a
single 2.40 GHz Intel processor to reach 30 time units. The 81922 pseudo-spectral integration required approximately 8 days
of computer power, using 256 2.00 GHz AMD Opteron processors, to reach 19 time units. It is not difficult to see that there is
an enormous difference in cost – and the pseudo-spectral integration is much more diffusive! Taking into account the dif-
ference in Reynolds number and the difference in computational efficiency, we estimate that Oð108Þ times more computer
power would be required for a comparable pseudo-spectral integration.

The CASL algorithm is not just available to study idealised 2D flows. It has been extended in many ways, for instance in
the simulation of 3D non-hydrostatic rotating stratified flows [4]. Work is underway to extend the algorithm to incorporate
non-conservative effects such as forcing. Further details, including codes, are available at http://www.casl.org.uk.
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