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Jet sharpening by turbulent mixing
BY D. G. DRITSCHEL* AND R. K. SCOTT

School of Mathematics, University of St Andrews, Fife, UK

Jets or localized strong currents in planetary atmospheres, as well as in the Earth’s
oceans, are often associated with sharp potential-vorticity gradients owing to the inherent
balance exhibited by these flows. Here, we explore and quantify jet sharpening in a simple
idealized single-layer quasi-geostrophic model on a mid-latitude b-plane. The advantages
of this idealization are that just two parameters control the flow development (the Rossby
deformation length and the amplitude of the initial random flow perturbation), and
that numerical experiments can comprehensively and accurately cover the parameter
space. These experiments, carried out at unprecedented numerical resolution, reveal
how an initially broad jet is sharpened, and the role played by coherent vortices in the
vicinity of jets.

Keywords: jets; turbulent mixing; potential vorticity

1. Introduction

Large-scale zonal jets are observed in a wide range of geophysical flows,
including those of the terrestrial atmosphere and oceans and, perhaps most
strikingly, the atmospheres of the gas giant planets. They play a key role in the
transport of heat, momentum and constituent tracers, including chemically and
thermodynamically important quantities such as ozone and water vapour. Various
dynamical processes have been considered with regard to their formation and
maintenance against dissipation, including mixing due to Rossby-wave critical
layers on the jet flanks [1], the arrest of the two-dimensional turbulent inverse
energy cascade (e.g. [2–4], among many others) or the organization of small-scale
eddy momentum fluxes by persistent latitudinal shear (e.g. [5]). Other authors
have sought an explanation in terms of statistical–mechanical arguments (e.g. [6]).

These studies, and many others since (e.g. the special collection on Jets
and Annular Structures in Geophysical Fluids; cf. [7,8]), have illuminated many
aspects of jet formation and maintenance. However, the fact that jets are observed
in such a wide range of dynamical regimes, and in the presence of very different
forcing mechanisms, underlines the robustness of the dynamics involved, which
is perhaps best understood in terms of the inhomogeneous mixing of potential
vorticity (PV), comprising, in the simplest context, the relative vorticity and the
vorticity owing to the planetary rotation. Zonal jets arise inevitably when PV
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Jet sharpening by turbulent mixing 755

is mixed over limited latitudinal regions, regardless of the form of the mixing.
This was discussed already by McIntyre [1] in the context of the winter polar
stratosphere, where PV is mixed by Rossby wave breaking in the mid-latitude
‘surf zone’ bounded latitudinally by sharp gradients of PV. (A similar concept
was recognized even earlier by Phillips [9] in the context of vertical mixing
by internal wave breaking in stratified flows.) Mixing here means latitudinal
mixing, across the planetary vorticity gradient, and acts to weaken local PV
gradients in the mixing regions themselves, and strengthen them in between.
Further, the non-local, long-range nature of the inversion operator relating the
instantaneous PV field to the flow velocity gives rise to a dynamical resilience,
whereby large latitudinal gradients of PV essentially inhibit large latitudinal
displacements of material lines, thereby essentially suppressing mixing there.
Regardless, therefore of the underlying cause of the mixing, whether by coherent
eddies or by breaking of large-amplitude Rossby waves, the mixing of PV will
be organized by the background flow into a highly inhomogeneous distribution.
The zonal jets are a direct consequence of the resulting PV structure. For
further discussion and references, see the recent reviews of Baldwin et al. [10]
or McIntyre [11].

A limiting case can be considered in which the PV is perfectly mixed across
adjacent regions, taking the form of a zonally symmetric staircase-like profile. The
form of the jets arising in this situation was discussed in detail in Dritschel &
McIntyre [7] and Dunkerton & Scott [8]. Both these studies showed a limiting
relation, for the case of infinite Rossby deformation length, between jet strength
and jet spacing, of the form Lj =

√
3LRh, where Lj is the distance between eastward

jets, and LRh is the Rhines scale, LRh = √
Uj/b, based on the peak eastward jet

velocity Uj and planetary vorticity gradient b. The
√

3 factor is expected quite
generally in any situation where the background angular momentum is quadratic
in the appropriate latitudinal coordinate (y in the case of the b-plane, m = sin f
on the sphere, where f is latitude).

The analyses of Dritschel & McIntyre [7] and Dunkerton & Scott [8] considered
the purely instantaneous structure of zonal jets. To understand their formation,
or maintenance against dissipation, however, it is necessary to take into account
the above eddy or wave mixing of PV in detail. At the simplest level, the Taylor
identity relating eddy momentum flux convergence with the eddy flux of PV,
reveals immediately how the formation of jets is connected to the eddy mixing of
PV, and, in the context of two-dimensional flow, the acceleration of the jet core
can be seen to be due directly to an upgradient flux of PV across the jet. Note,
however, that upgradient here is in the sense of the traditional Eulerian zonal
mean. Such upgradient fluxes are not inconsistent with the generalized mixing
(advective mixing plus diffusion) considered in the study of Wood & McIntyre
[12], which must be associated with purely downgradient fluxes at a local or
molecular level. In other words, although local PV fluxes are downgradient, the
large-scale flow can be such that fluxes may occur counter to the Eulerian zonal
mean gradient. Thus, fig. 1b,c of Wood & McIntyre [12] is precluded not because
of the presence of upgradient fluxes in the Eulerian zonal mean, but rather on
account of the theorem proved later in that paper, which states that the net
global angular-momentum change accompanying any physical mixing event must
be negative.
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756 D. G. Dritschel and R. K. Scott

Using a simple thought experiment, Wood & McIntyre [12] illustrate how
mixing confined to the flanks of a pre-existing broad, weak jet results in the
intensification of the PV gradients and zonal velocity in the jet core, while at
the same time reducing the total angular momentum of the system. In that
experiment, the jet is assumed to both start and end in a zonally symmetric
state and only the final effect of the mixing on the flow is prescribed. This paper
is motivated, in part, by the desire to examine how such a mixing may arise in
a fully turbulent flow, and, in particular, how the presence of an initially broad,
weak jet organizes the subsequent mixing preferentially on the jet flanks, leading
to the positive feedback described above. This is done through a series of simple
numerical experiments, described in §§2 and 3 below. To quantify the ensuing
jet sharpening, we introduce (also in §3) a new diagnostic based on the topology
of the full two-dimensional PV field. This diagnostic allows a clearer view of
the intensification of PV gradients than both traditional Eulerian zonal averages
or, surprisingly, equivalent latitude-based quantities; both of these work well in
the limit of purely two-dimensional barotropic dynamics, when the final jets are
nearly perfectly aligned zonally, but fail for different reasons when the Rossby
deformation length becomes small.

2. Model and experimental design

(a) Equations of motion

We consider the quasi-geostrophic approximation to the rotating shallow water
equations on the b-plane, where the Coriolis parameter f = f0 + by is linear in
y with constant gradient b. The equations reduce to the material advection of
quasi-geostrophic PV, q,

qt + J (j, q) = 0, (2.1)

by a flow whose streamfunction j is related to q through

q = by + V2j − L−2
D j, (2.2)

where LD = √
gH /f0 is the Rossby deformation length and where g is gravity and

H is the mean layer depth. The case L−1
D → 0 corresponds to the case of purely

two-dimensional, barotropic vortex dynamics. Equation (2.1) is solved in a doubly
periodic domain of width 2p in both the x- and y-directions.

(b) Initial conditions

The initial conditions comprise a basic state PV q0(y), which is a function
of y only, together with a spatially random perturbation q ′(x , y) of specified
amplitude, which leads to turbulent mixing. The basic state follows that of
Wood & McIntyre ([12], §10), and is given by

q0(y) = 2pb

Lj
√

p

∫ y

0
e−(y′/w)2 dy ′, (2.3)

where w is a measure of the width or smoothness of the jet. Note that for
numerical convenience, we work in a doubly periodic domain of width L = 2p
and consider the case b �= 0. This fixes the total change in q0 across the domain

Phil. Trans. R. Soc. A (2011)

 on January 17, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Jet sharpening by turbulent mixing 757

L D
−1 = 0 

q/bp

q/bp

8

0 1

1

0y/
p

−1

u/U

u/U

−3 0 3

−1

Figure 1. Initial basic state PV and velocity profiles, q0(y) and u0(y), the latter shown for values
of L−1

D = 0, 2, 4, 6, 8.

to be 2pb. Equation (2.3) is adjusted by a multiplicative factor close to unity to
ensure that q0 = ±bL exactly at y = ±p. In all the experiments below, we fix the
width of the jet to be w = 1 and the background PV gradient to be b = 2. With
these values, the form of q0 is as shown in figure 1. We define a nominal unit of
time as T = 4p/(q0(p) − q0(−p)), here equal to unity. The actual characteristic
time depends on several factors (L−1

D , amplitude of the perturbation q ′, etc.) in
a complicated manner. We have ensured that all simulations were evolved long
enough to reach a quasi-steady regime.

The basic state velocity profile, u0(y), then follows from equations (2.2) and
(2.3). In an infinite domain, it is given by eqn (10.4) of Wood & McIntyre [12].
Here, there is a slight modification owing to the periodicity of the domain, but
the profile is not substantially different. We further impose the condition that the
y-averaged velocity is exactly zero. A number of profiles are shown in figure 1 for
values of L−1

D = 0, 2, 4, 6, 8. All profiles have been normalized by a velocity scale U
that is obtained from u0 weighted by the basic state PV gradient and integrating
across the domain,

U = 1
2pb

∫p

−p

u0
dq0

dy
dy. (2.4)

This evaluates to U = 2.57, 0.556, 0.172, 0.0801, 0.0459 for the cases L−1
D =

0, 2, 4, 6, 8, respectively.
The basic state PV is then perturbed by adding a random field q ′ whose

energy spectrum takes the form E(k) = ak3 exp [−2p(k/k0)2], where a and k0
are constants. This has an enstrophy-energy centroid wavenumber at k = k0 and
peaks at wavenumber

√
3/4k0. In all the calculations presented below, we use

k0 = 16, giving a perturbation whose scale is small relative to the initial jet width
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758 D. G. Dritschel and R. K. Scott

(a) (b)

Figure 2. Initial PV field (basic state plus perturbation) for perturbation amplitudes (a) qe = 0.5
and (b) qe = 4. (Online version in colour. The colour range from red through to green/cyan to
blue/purple represent values in the range [−2pb, 2pb]; outside this range, the colours are cycled
periodically.)

and to the smallest deformation length considered. A suitable measure of the
perturbation amplitude is defined as

qe = q ′
r.m.s.

2pb
, (2.5)

the ratio of the r.m.s. perturbation to the PV contrast of the basic state across the
domain. We consider the range of values qe = 0.5, 1, 2, 4. The full PV fields (basic
state plus perturbation) for the two cases qe = 0.5 and qe = 4 are shown in figure
2. Note that in the case qe = 4, the perturbation field comprises values greatly
exceeding those of the basic state, to the extent that the gradient of the basic
state is not visible by eye. A list of the simulations performed is given in table 1.

(c) Numerical algorithm

The numerical simulations were carried out using a new, more accurate and
flexible version of the contour-advective semi-Lagrangian (CASL) algorithm
[13]. This new algorithm, called the combined Lagrangian advection method
or ‘CLAM’ [14] is itself an extension of HyperCASL [15], which introduced
a novel way of forcing flows and, furthermore, fixed all numerical-parameter
dependencies. CLAM goes a step further than HyperCASL by computing the
evolution of the total PV field qs on a grid (here by the pseudo-spectral method)
and blending this solution with that obtained by a set of PV contours, qa, i.e.
obtained by ‘contour advection’. Essentially, a low-pass filter is applied to qs and
its complement is applied to qa, thereby retaining the large-scale parts of qs and
the intermediate- to small-scale parts of qa. This blending of solutions ensures
that each method is used where it is most accurate, while not compromising
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Table 1. List of the simulations performed together with the initial total energy E = −〈jq〉/2 and
r.m.s. relative vorticity zr.m.s..

L−1
D qe E(0) zr.m.s.(0)

0 0.5 2.46581 2.69180
2 0.5 0.50585 1.46745
4 0.5 0.15324 1.33505
6 0.5 0.07443 1.56553
8 0.5 0.04323 1.28056
0 1 2.47818 3.75510
2 1 0.52251 3.11779
4 1 0.16332 2.60282
6 1 0.08695 2.87595
8 1 0.05702 2.68795
0 2 2.53923 6.91690
2 2 0.57795 6.13519
4 2 0.23228 6.37645
6 2 0.14140 5.76718
8 2 0.09578 4.84744
0 4 2.76178 12.47165
2 4 0.79742 12.12489
4 4 0.37946 10.48882
6 4 0.31457 10.56548
8 4 0.22126 8.74750

efficiency. An additional gridded residual field qd is evolved to allow for forcing
and to compensate for errors in contouring a smooth field by a discrete set of
contours. At the beginning of every time step, qs is initialized with the total PV
field obtained at the end of the previous time step (combining qs, qa and qd),
and qd is adjusted so that the total PV remains unchanged. Complete details and
numerical tests are available in Dritschel & Fontane [14].

In the current work, a basic ‘inversion’ grid of 256 × 256 is used to compute
the velocity field from the PV. For accuracy, the contour part qa is obtained
using a fast-fill routine on a grid four times finer in each direction, then
averaged to the inversion grid [13]. On this grid, the quasi-geostrophic PV
anomaly q − by is spectrally transformed using fast Fourier transforms, enabling
a simple calculation of the velocity by wavenumber multiplication followed
by inverse fast Fourier transforms. The PV is retained down to scales 16
times smaller, where it is dissipated by ‘surgery’, an efficient procedure that
removes very thin filaments and joins very closely separated regions containing
the same PV. This results in an exceptionally weak dissipation compared
with other standard methods, as a recent comparison has demonstrated [16].
The other numerical parameters are functions of the grid resolution (see
[15]). The only exception is the PV contour interval, here chosen to give
160 contour levels between the minimum and maximum initial PV. This
is greater than the 40 recommended in Fontane & Dritschel [15] to better
capture weak variations of PV in nearly homogenized regions of the flow at
late times.
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(i) (ii) (iii)

(a)

(b)

Figure 3. PV at times (i) t = 5, (ii) t = 20, (iii) t = 200 for the cases (a) L−1
D = 0 and qe = 1 and (b)

L−1
D = 0 and qe = 4; colours as in figure 2. (Online version in colour.)

3. Results

(a) General features of the evolution

We consider first the case L−1
D = 0 with a weak level of initial vorticity

perturbation, qe = 1. The behaviour is summarized in figure 3a, which shows
snapshots of the PV at times t = 5, 20, 200 illustrating the main stages of the
evolution. During the initial stage, up until around t = 5, the initial PV anomaly
is strongly sheared by the velocity profile of the basic state jet. This gives way to
an intermediate stage around t = 20, when most of the initial perturbation has
been dissipated at small scales by the forward enstrophy cascade. At this point,
a population of coherent vortices has emerged, which continues to mix PV in the
region away from the jet. The vortices that persist in this stage are those that
are sufficiently small and intense to survive the effects of the background shear.
Notice that the central jet region, where the shear is weak, is largely free from
coherent vortices, presumably a result of the well-known northward/southward
drift of positive/negative vorticity anomalies on a background vorticity gradient
(see [17] and references therein). The persistence of this effect in the presence
of background jets was also noted recently [18]. Mixing of the PV during this
stage occurs through a combination of the jet shear and the flow induced by
the coherent vortices. By t = 200, a final, late stage has been reached, by which
point almost all of the turbulent enstrophy has been dissipated, apart from a few
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 on January 17, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Jet sharpening by turbulent mixing 761

(a) (b) (c)

Figure 4. PV at times (a) t = 10, (b) t = 40, (c) t = 400 for the case L−1
D = 4 and qe = 4; colours as

in figure 2. (Online version in colour.)

isolated vortices drifting in a region of almost zero background PV gradient. In
contrast, the gradients in the central jet region have been enhanced, as will be
quantified further below. Note that the final PV distribution is nearly zonally
symmetric in this case.

Snapshots of the PV at the same times are shown in figure 3b for the case
L−1

D = 0 and qe = 4. Although the initial perturbation is much stronger, and
the initial shearing by the background flow is much more violent, the main
characteristics of the evolution are broadly similar to the case with qe = 1. In
particular, the coherent vortices have again mostly left the central jet region by
t = 20. In this case, the emergence of the central jet is clear at t = 20. Although
still very undular as a result of the intense turbulent activity, by this time it
nevertheless exhibits enhanced PV gradients across its core. These enhanced
gradients are clear at t = 200, by which time the undulations on the jet have
all but died out. Unsurprisingly, the vortices remaining at late times are more
intense than for qe = 1.

Finite, but large values of the Rossby deformation length, specifically L−1
D � 2,

introduce relatively minor changes to the evolution described above. The
differences become greater at L−1

D = 4 and above. At these values, the shorter
range nature of the PV inversion operator means both that the shear associated
with the basic state jet is weaker (see the values of U given at the end of §2)
and that the vortices remain coherent on scales comparable to LD. Further, the
weaker basic state means that the ratio of perturbation PV to background shear
is larger at larger L−1

D , implying a more important role for coherent vortices in
the mixing of background PV.

The evolution of the case L−1
D = 4, qe = 4 is shown in figure 4; later times are

shown than for the L−1
D = 0 cases reflecting the slower dynamics of the flow in this

case. As predicted, there is less evidence of early and intermediate mixing by the
background shear, but the flow is dominated by interactions of the strong coherent
vortices. Additionally, these coherent vortices now exist all the way across the jet
region (at t = 20 and t = 40). This is consistent with earlier studies of vortex drift
on the b-plane, which showed slower drift at smaller LD [17]. The vortices in the
jet region induce strong meanders in the jet on the scale of the vortices. Again,
because of the short-range nature of the PV inversion, these meanders persist at
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Figure 5. Vortex number density n(A) versus area A averaged over two time periods [10, 40] (plus
symbols) and [300, 400] (squares), for the case L−1

D = 4 and qe = 4 shown in figure 4. Vortices are
defined to be contiguous regions (i) having a PV anomaly |q − by| above the global r.m.s. anomaly
and (ii) having an eccentricity 2l/(1 + l2) > 0.5, where l ≤ 1 is the aspect ratio of an ellipse having
the same area, first and second spatial moments. The cascade to larger scales is seen here by the
emergence of vortices at the largest areas (square symbols on the right), and the related reduction
of vortices at intermediate scales (by vortex merging).

(a) (b) (c)

Figure 6. PV at times (a) t = 25, (b) t = 100, (c) t = 1000 for the case L−1
D = 8 and qe = 4; colours

as in figure 2. (Online version in colour.)

late times (t = 400). Despite the meanders, however, a strong PV gradient is still
apparent across the jet core, quantified in §3b. Finally, note that a clear inverse
cascade is visible in the population of coherent vortices (figure 5), proceeding
through successive vortex merger events and resulting only in three large vortices
by t = 400.

The case of L−1
D = 8, shown in figure 6, is similar to that of L−1

D = 4, but yet more
pronounced: the initial turbulent flow resulting from the perturbation completely
dominates the effect of the jet shear. In this case, the final vortices induce strong
meanders in the jet, with the whole pattern propagating to the left with relatively
little change in form over time.
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Figure 7. (a) Zonal mean PV as a function of y (dashed line) and PV as a function of ye (solid
line) and (b) zonal mean zonal velocity as a function of y and along-jet velocity as a function of ye
calculated according to equation (3.1). Both panels are at time t = 190 for the case L−1

D = 0, qe = 4.

(b) Quantification of jet sharpening

We next consider different measures of the mean PV gradient in the jet core.
To illustrate the ideas most clearly, we focus here on the most extreme cases with
qe = 4; the results for smaller values of qe are summarized in §3c.

The simplest way of averaging along the jet uses the traditional Eulerian zonal
mean. In cases where the jet is zonally aligned with weak or no meanders (as in
the cases of L−1

D = 0 above), the zonal mean provides an accurate representation
of the PV gradients across the jet and the corresponding along-jet velocity. These
are shown in figure 7 (dashed lines) for the case L−1

D = 0, qe = 4. The PV gradients
(figure 7a) in the jet core have increased significantly beyond their initial value
(cf. figure 1), while those on the jet flanks have been effectively reduced to 0,
giving rise to a clear PV ‘staircase’ as described above. The corresponding along-
jet velocity (figure 7b) has increased in the jet core consistent with the enhanced
PV gradients there. Note however that, in contrast to the thought experiment of
Wood & McIntyre [12], the total angular momentum is invariant in this system.

Figure 8(a,b) shows the same zonal mean quantities (dashed lines) for the case
L−1

D = 8. Here, because of the strong jet meanders, the zonal average significantly
underestimates the steep local PV gradients across the jet seen in figure 6, and
the associated local along-jet velocities, effectively smearing out the jet. As the jet
is aligned along the contours of constant PV, one improvement of the traditional
Eulerian mean is to consider an average along these contours, an idea introduced
originally by McIntyre [19]. In the usual way, we define the equivalent latitude
ye of a contour C of constant PV as the y-position of a straight, zonally aligned
contour enclosing the same area as C. This defines a monotonic function ye(q),
which can be inverted to obtain PV as a function of ye. Further, for a given q,

Phil. Trans. R. Soc. A (2011)

 on January 17, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


764 D. G. Dritschel and R. K. Scott

q/bp

y/
p

wrapping
contours

zonal
average

1
(a) (b)

−1 0 1

0

−1

1

0

−1

t = 950

q′r.m.s. /Δqjet = 4LD
–1 = 8 q′r.m.s. /Δqjet = 4LD

–1 = 8

0
u/U

−4 4

t = 950

wrapping
contours

zonal
average

Figure 8. As in figure 7, but for the case L−1
D = 8, qe = 4 and at time t = 950.

we define an average along-contour velocity by an arc length weighted integral of
the tangential component of u along C,

u(q) = 1
LC

∫
C(q)

u · dx, (3.1)

where LC = ∫
C(q) ds is the arc length of C. Together with q(ye), this gives an along-

jet velocity as a function of ye. The quantities q(ye) and u(ye) typically provide
a better representation of jet gradients and velocities than the traditional zonal
mean in cases when the jets exhibit strong departures from zonal symmetry.
However, in cases when there are also large coherent vortices outside of the jet
region, these vortices will contribute to the equivalent latitude in a way that does
not necessarily reflect properties of the jet. Essentially, the area enclosed by a
given PV contour located in the jet core may contain a contribution owing to
PV values inside a strong cyclonic vortex to the south of the jet, or a strong
anticyclonic vortex to the north, as may form from the pinching-off of a large jet
meander. In regimes such as those considered here, where such vortices make up a
significant fraction of the area within a contour, the standard equivalent latitude
can give a highly distorted view of the jet.

A simple improvement is to consider, in the calculation of ye, only those
contours that wrap the domain in the x-direction. Restricting attention to such
contours eliminates any contribution from closed vorticity regions away from
the jet. An example is shown in figure 9, taken from the case L−1

D = 8, qe = 4
at t = 1000. Only the contours that wrap the domain are plotted. Most of these
lie within the jet region, and the voids associated with coherent vortices on the
flanks are evident. Note that the initial distribution of PV contours is determined
by equation (2.3); the contours are equally spaced in q and so weakly concentrated
near y = 0 by the error-function profile. By t = 1000, the effect of the turbulent
mixing is such as to bunch the contours more tightly around y = 0.
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Figure 9. Wrapping contours in the case L−1
D = 8, qe = 4 at t = 1000.

The quantities q(ye) and u(ye) as a function of equivalent latitude ye, thus
restricted to wrapping contours, are shown for the above cases by the solid
lines in figures 7 and 8. For the case L−1

D = 0, the equivalent latitude quantities
agree closely with the traditional zonal means for the reasons just stated
(u(ye) is more peaked because of the increase in contour lengths LC from
filamentation away from the jet core). For the case L−1

D = 8, however, figure 7
shows a markedly different structure in the jet core. In the PV q(ye), two
distinct regions of very steep gradients are visible, which are missed altogether
by the zonal mean. This structure is also visible in the along-jet velocity profile
u(ye), which shows a clear double-peak structure, again not captured by the
zonal mean.

The emergence in time of the fine-scale structure is shown in figure 10. Note
that the early values of u(ye) are generally larger than those of the basic state, on
account of the initial PV perturbation, and because the jet is very weak at this
time. Nevertheless, the fine-scale structure begins to appear already at t = 50
in both q(ye) and u(ye). It is well established by t = 250 and strengthens only
slightly thereafter.

The persistence of the double jet between t = 250 and t = 1000 is of interest
in itself. Despite the proximity of the jets, they show no sign of merging into a
single stronger jet. In fact, in this and many other model integrations, including
integrations of forced-dissipative turbulence, it was found that two nearby jets
may coexist for a surprisingly long time, much longer than the time taken to
reach a statistical equilibrium.
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Figure 10. Evolution of (a) q(ye) and (b) u(ye) for the case L−1
D = 8, qe = 4.

(c) Summary across all parameters

Finally, to summarize the degree of jet sharpening across the full range of
parameter values, we consider two integral measures of the PV gradient and
along-jet speed. To focus attention on the relevant quantities in the vicinity of the
jet core, we define a jet-weighted average by multiplying the quantity of interest
by the appropriate mean PV gradient before integrating across the domain. For
a zonal mean function f̄ (y), we define the jet-weighted average simply as

〈f̄ 〉 = 1
Q

∫p

−p

f̄ (y)
dq̄
dy

dy, (3.2)

where Q = ∫p

−p
(dq̄/dy) dy = 2pb is the PV contrast across the channel. When

f̄ = dq̄/dy, the PV gradient, this is just the ratio of the L2 and L1 norms of
dq̄/dy.

On the other hand, when f is a given function of PV q or equivalent latitude,
ye, we define

〈f 〉 = 1
Q

∫ q(p)

q(−p)
f (q) dq = 1

Q

∫p

−p

f (ye)
dq
dye

dye, (3.3)

in which q is written as a function of ye (this is possible because the inverse
function ye(q) is monotonic). Again, the normalization Q = ∫p

−p
(dq/dye) dye =

2pb. As discussed above, in the calculation of ye, we only consider PV contours
that wrap the domain in the x-direction.

Figure 11 shows both averages, based on equivalent latitude and zonal mean,
for the case f = dq/dye and f̄ = dq̄/dy. In each case, the values are normalized
by the basic state value (which is the same for both diagnostics, but varies with
L−1

D ). Both quantities show a general increase of the across-jet PV gradient with
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Figure 12. Jet-weighted averages of along-jet velocity for all calculations qe = 0.5, 1, 2, 4 and L−1
D =

0, 2, 4, 6, 8: (a) based on equivalent latitude 〈u(ye)〉 and (b) based on the zonal mean 〈ū〉. Values
are normalized by the value of the corresponding basic state.

increasing turbulent intensity qe, as expected. Surprisingly, the zonal mean shows
a stronger intensification of the across-jet gradients, particularly at large L−1

D .
This is because there are large contributions to the zonal-mean PV gradient well
away from the jet core—as seen for example in figure 8a. These contributions are
associated with the coherent vortices seen in figure 6. Hence, the zonal mean PV
gradient does not directly quantify the jet. The equivalent latitude mean, on the
other hand, provides a true measure of the PV gradient intensification of the jet.
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The jet-weighted averages with f = u(ye) and f̄ = ū are shown in figure 12.
Both quantities again show an increase with qe and now also with L−1

D . The
increase with L−1

D is due, in part, to the decrease of the corresponding values of
the basic state. Again, the zonal mean averages are, in general, significantly larger
than averages based on equivalent latitude. Once again, this difference is because
of contributions from coherent vortices in the zonal mean. The zonal mean is
strikingly different from the equivalent latitude mean particularly at large L−1

D ,
as illustrated in figure 8b for L−1

D = 8. Only the equivalent latitude mean directly
measures jet sharpening. Strongest jet intensification occurs for large qe and L−1

D ,
although some intensification also occurs at smaller LD.

4. Conclusions

By way of a set of simple numerical experiments, we have addressed the nature
of jet emergence from a fully turbulent flow. The numerical method used here
takes advantage of recent extensions to the well-tested CASL method, and
combines the efficiency of contour dynamics at representing small-scale structures,
with the robustness of the pseudo-spectral method at conserving large-scale
quantities such as energy and momentum. The new combined method permits
an unprecedentedly detailed examination of freely decaying b-plane turbulence,
which requires a near dissipation-less representation of the evolution, on account
of the long integration times needed to reach equilibrium, as well as robust
conservation properties.

A key finding in this study is that jet emergence from a turbulent flow occurs
in two main stages. The first, early stage is characterized by the mixing of PV
anomalies by the basic state shear associated with the weak initial jet. This is
followed by a second, longer stage in which the mixing is enhanced by coherent
vortices that emerge in an inverse energy cascade from the small-scale initial
perturbation. In each stage, the mixing is confined to the jet flanks: in the
first stage because the shear has a minimum in the jet core, and in the second
stage because the coherent vortices tend to drift away from the jet core on the
background PV gradient. The relative importance of the two stages depends on
the initial ratio of perturbation vorticity to basic state shear.

In quantifying jet intensification, the traditional Eulerian zonal mean may
significantly underestimate the across-jet PV gradient and along-jet velocity,
particularly in cases when the Rossby deformation length is small and the jet is
highly undular. Diagnostics based on equivalent latitude provide a better picture
in these cases, but even here can be obscured by contributions from large coherent
vortices that are not part of the jet itself. This limitation was overcome in this
study by imposing a topological constraint, namely considering only those PV
contours that wrap the domain zonally in the calculation of equivalent latitude.

Over the wide range of cases examined, from weak to strong levels of turbulence
qe, and from small to large Rossby deformation lengths LD, the mixing of PV was
found to steepen PV gradients across the jet core and reduce them on the flanks.
This restructuring of the PV field, however, does not always result in a strong
intensification of the along-jet velocity. Strong intensification is mainly found for
large values of qe.
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Perhaps, the most striking feature of the above calculations is the degree of
influence of the initial jet when the initial perturbation is strong, qe = 4. In the
initial PV field, shown in figure 2b, the gradient of the basic state is completely
dominated by the perturbation. That this field evolves robustly to the states
shown in figures 3–6 (right), comprising a sharp jet located exactly at y = 0,
is truly remarkable. An alternative view would be to consider the perturbation
field q ′ as a prescribed initial isotropic ‘basic state’ and to consider the jet q0
as a zonal ‘perturbation’; then our results show that a relatively small zonal
perturbation is sufficient to nudge the evolution into a given configuration. In
other words, a slight strengthening of the initial PV gradients in the centre
of the domain results in the emergence of a jet at precisely that location.
This provides a clear illustration of the robustness of the positive feedback
effect described in the introduction, whereby a small perturbation to the zonal
mean PV gradient will amplify owing to its organization of the turbulent
eddy mixing.
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