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A new numerical technique for the simulation of forced two-dimensional turbulence
[D. Dritschel and J. Fontane, “The combined Lagrangian advection method,” J.
Comput. Phys. 229, 5408-5417 (2010)] is used to examine the validity of Kraichnan-
Batchelor scaling laws at higher Reynolds number than previously accessible with
classical pseudo-spectral methods, making use of large simulation ensembles to allow
a detailed consideration of the inverse cascade in a quasi-steady state. Our results
support the recent finding of Scott [R. Scott, “Nonrobustness of the two-dimensional
turbulent inverse cascade,” Phys. Rev. E 75, 046301 (2007)], namely that when a
direct enstrophy cascading range is well-represented numerically, a steeper energy
spectrum proportional to k=2 is obtained in place of the classical k=3 prediction.
It is further shown that this steep spectrum is associated with a faster growth of
energy at large scales, scaling like #~! rather than Kraichnan’s prediction of 1~/2.
The deviation from Kraichnan’s theory is related to the emergence of a population
of vortices that dominate the distribution of energy across scales, and whose number
density and vorticity distribution with respect to vortex area are related to the shape of
the enstrophy spectrum. An analytical model is proposed which closely matches the
numerical spectra between the large scales and the forcing scale. © 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4774336]

I. INTRODUCTION

Density stratification and planetary rotation place strong constraints on geophysical flows in
a wide range of situations, from the Jovian atmosphere to the earth’s oceans. These flows can be
represented to a good approximation by layer-wise two-dimensional flow with varying degrees of
vertical coherence; high Reynolds number, two-dimensional turbulence is commonly considered as
one of the simplest models to assess qualitative aspects of their dynamics. Due to the existence
of two invariants, energy and enstrophy, this model exhibits the most remarkable feature of two-
dimensional flows, namely a dual cascade in which energy is transferred preferentially to large
scales, while enstrophy is transferred preferentially to small scales. Both cascades are associated
with inertial ranges characterised by a power-law distribution of the relevant quantity across scales.
Assuming constant energy and enstrophy fluxes, € and 5, respectively, and assuming locality of
interactions between different scales, Kraichnan® showed in his pioneering theoretical work that the
energy is distributed across wavenumbers k as E(k) = Ce**k= for k < k; and E(k) = Cn**k=3
for k > kg, where ky is the wavenumber at which energy is input into the system. The form of the
enstrophy inertial range in the freely-decaying case was also found shortly thereafter by Batchelor*”
and is now commonly referred to as the Batchelor spectrum. Kraichnan* later introduced a weak
logarithmic correction to take into account the effect of non-locality in the enstrophy inertial range,
suggesting a modified spectrum of the form E(k) = Cn**k—>log (k/kp)~'.

Since then, a substantial number of studies have been carried out to validate the Kraichnan-
Batchelor theory by means of numerical simulations>'>3% and physical experiments.'3~%3% While
most of them have confirmed the Kraichnan-Batchelor theory, three numerical works found a
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deviation from the k=3 spectrum in the inverse energy cascade range where a steeper slope was
measured: Borue'® observed spectra as steep as k~* while Smith and Yakhot,® and Danilov and
Gurarie'! observed spectra of the form k™" with 2 < n < 2.3 and 2.2 < n < 2.5, respectively—even
in special cases with no large-scale energy dissipation. All these authors attributed these deviations
to the emergence of a population of coherent vortices. As concluded by Danilov and Gurarie,'! the
universal k=33 seems “exceptional and unstable.” But all of these studies>~'>33:34 suffer from at least
one of the two following issues that have a strong influence on both cascades, which put in question
the reliability of their results.

First, most studies have focussed on only one of the inertial ranges due to numerical or exper-
imental constraints. In these studies, energy is typically injected close to the largest (or smallest)
resolved scale in order to produce a direct (or inverse) cascade over a range of scales as wide as
possible. More recently, however, it has become possible to assess the effect of the representation
of one cascade on the dynamics of the other. This was first considered by Tran and Bowman,'® who
showed that even in the absence of a direct enstrophy cascade, i.e., for energy spectra steeper than
k> in the enstrophy inertial range, the spectrum in the energy inertial range is not affected, only
the strength of the cascade is altered. This underscores the robustness of the energy inverse cascade
which was commonly observed in previous works. On the other hand, Scott? demonstrated that the
slope of the inverse cascade may not be robust to increases in the width of the enstrophy cascading
range. Measuring the width of the enstrophy range by the ratio k,../kr where k,q, is the maximal
resolved wavenumber, for regular viscosity it was shown that when this ratio exceeds a value of
around k,,,,/k; = 16 (corresponding to the onset of the direct cascade) the inverse cascade steepens
from k=3 to k~2. When hyperviscosity is used in place of viscosity, a similar steepening occurs,
but for a lower value of k,,./kf ~ 8. The ratio must be increased still further, to a value of around
kmaxlks ~ 64, before the inverse cascade approaches full strength, in the sense that almost all of
the energy input is transferred to larger scales. The steepening for large k,,../kr was again attributed
to the emergence of a population of coherent vortices that dominates the energy distribution in
the inverse cascade. A recent paper by Vallgren'” using a pseudospectral model at extremely high
resolution concluded also that the inverse cascade is steeper than k= at large k;q./ky, supporting the
results of Scott, and identified the importance of spectrally nonlocal energy transfers associated with
coherent vortices. On the other hand, it was found that the spectrum associated with the incoherent
background of vorticity filaments does obey the Kraichnan-Batchelor scaling.

The second issue that requires careful attention is the implementation of large-scale friction or
hypo-diffusion, often used in previous studies, to remove energy at large scales. This is typically
done to allow a statistical steady state to be reached, in which energy input is balanced by energy
removal, and to prevent the build up of energy in the lowest modes, a phenomenon sometimes
referred to as “condensation.””® The use of such energy dissipation, however, typically distorts
the inertial range, either through large-scale bottleneck effects in the case of hypo-diffusion, or
by destroying the assumption of constant energy flux in the case of friction.'""!® The last point
is important when considering the recent numerical simulations of Boffetta'® and Boffetta and
Musacchio,?” who obtained a k=5 spectrum but in the presence of linear friction.?! In the paper of
Vallgren,!” the effect of linear friction was also considered and found to lead to slopes that varied
between Kraichnan’s —5/3 prediction and a significantly steeper value of —2.4.

All these previous studies that found deviations from the Kraichnan-Batchelor theory were
either using a low-wavenumber energy dissipation'® ! or, otherwise, were forcing the flow close
to the dissipation scale: the ratio k. /ks varied between 3 and 5 for Borue,!? between 4 and 5 for
Smith and Yakhot® and between 1 and 4 for Danilov and Gurarie.'! So none of these studies were
designed to avoid simultaneously these two problems and this, we believe, is why there is such a
variability in the measured spectral slope of the inverse cascade. The purpose of the present work
is to provide (i) additional validation of a steeper inverse cascade than theorized by Kraichnan® and
found in many previous numerical studies, and (ii) detailed analysis of the vortex population which
emerges and modifies this cascade. We avoid the use of frictional or other large-scale damping, and
ensure adequate resolution of the enstrophy cascade range by taking k,,q./ky = 64.

To this end, we examine numerical simulations which are original in two respects. First, we
exploit the latest generation of powerful algorithms specially designed for geophysical flows.! The
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combined Lagrangian advection method (CLAM) is a hybrid method that combines the efficiency of
Lagrangian contour dynamics with the energy conservation properties of the pseudo-spectral method.
Its use allows the simulation of much higher Reynolds number than is possible with traditional (e.g.,
purely pseudo-spectral) methods. In contrast to pseudo-spectral methods, where regular viscous or
hyperviscous schemes must be added for numerical stability, no explicit diffusion term is needed
here. Weak dissipation arises from the use of contour surgery,”>>* which is used only to control
the complexity of vorticity contours. Importantly, surgery takes place at a scale well below the
grid size and has no diffusive effect whatsoever on steep vorticity gradients. In the freely decaying
case, these hybrid algorithms were proved to be less diffusive, more accurate and considerably
more efficient than pseudo-spectral methods.>*?> Second, because no large-scale damping is used,
statistical convergence is obtained by means of ensemble-averages of many simulations, which to
our knowledge has never been done previously in forced 2D turbulence. Our simulations may be
considered quasi-stationary in the sense that the energy levels at a given scale in the inverse cascade
remain constant while the length of the inverse cascade and the total energy of the flow increases.
Our approach is therefore consistent with Kraichnan’s original theory, in which energy is assumed
to cascade, undissipated, to ever larger scales. This implies that the flow is continuously evolving,
and hence analyses based on time averaging are generally inappropriate.

The remainder of the paper is organised as follows. In Sec. II, we describe the numerical
simulations and give a short overview of the CLAM algorithm and its advantages over other methods
in current use. In Sec. III we present the main results, describing the general evolution of the flow
and the evolution of the energy distribution in spectral space; this is followed by an analysis of the
vorticity field in physical space, showing that the deviation from the Kraichnan-Batchelor theory
is associated with the emergence of a population of coherent vortices distributed across a range of
length scales. We conclude in Sec. IV with a short summary.

Il. NUMERICAL SIMULATIONS

Using the streamfunction v and vorticity w, the two-dimensional Euler equations governing the
motion of an incompressible fluid submitted to external forcing f can be written as

atw+J(w7w)=f7 (1)

where w and 1 are related by Poisson’s equation @ = Ay and the two-dimensional Jacobian is J(v/,
w) = 0, dyw — 9, d w. The velocity field u is given by u = (—0,v, 3, ). The external forcing
fis chosen as a §-correlated in time enstrophy input localised at wavenumber &, i.e., its correlation
function satisfies { fi(¢) f*(t)) = F(k)é(t — t') with spectrum F(k) = n/(2Ak) for |k — k| < Ak and
F(k) = 0 otherwise. Here the enstrophy input rate (per unit area) is chosen to be 1 = ¢ (27)? with ¢
= 0.2, without loss of generality. The flow is doubly-periodic in a domain of dimensions 27w x 27
and starts from a state of rest.

The simulations are performed using the CLAM, a new hybrid numerical method for simulating
layerwise-two-dimensional geophysical flows combining spectral methods, contour advection, and
vortex-in-cell methods.! The spectral method is used to represent large scales, Lagrangian contours
are used to represent intermediate and small scales, and Lagrangian particles are used to represent
forcing and dissipation, i.e., the narrow-band forcing f in the present case. Developed from the
CASL?%27 and HyperCASL>>?® algorithms, CLAM takes advantage of each of the methods and
achieves a substantially greater efficiency and accuracy than is possible when using any one element
on its own. No dissipation scheme is introduced either at large or at small scales. The flow evolution
is nearly inviscid with exceptionally weak numerical dissipation arising from surgery?>?* or from
contour and point vortex regularisation.?® In particular, contour surgery has no diffusive effect on
steep gradients of vorticity.

To obtain a statistical steady state and allow temporal averaging, most previous numerical studies
have used a form of damping to remove energy at large scales. As already mentioned, however, such
damping may be inconsistent with Kraichnan’s theory and can significantly alter the nature of the
inverse cascade.!!:'® To avoid this problem, statistical convergence is instead obtained by averaging
over an ensemble of simulations. Here, two sets of 25 simulations are performed at two different
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TABLE I. Numerical parameters used of the two sets of 25 simulations performed. The duration of the simulations is
computed in terms of both the time integrated maximum vorticity and the time integrated rms vorticity.

Set A B
Inversion grid resolution N =256 N =512
Contouring grid resolution N/ = 4096 Nr= 8192
Forcing wavenumber kp=32 kr = 64
Maximal resolved wavenumber kmax = 2048 kmax = 4096
Half band width of the forcing Ak=2 Ak=4
Effective Reynolds number 9.5 x 10° 3.8 x 107
Average duration of the simulations based on @, 297 Teaay 346 Teday
Average duration of the simulations based on w5 28.6 Tys 28.9 Ty

resolutions: N = 256 for set A and N = 512 for set B where N is the number of grid points of the
principal “inversion” grid where the velocity field is computed by inversion of the vorticity field. The
use of an underlying ultra-fine “contouring” grid together with the advection of contours enables
one to resolve scales far below those associated with the inversion grid. The effective resolution N'
associated with the contours is sixteen times finer than the main one N, giving values, respectively,
of N' = 4096 and N' = 8192.% In set A, the effective Reynolds number?* is 9.5 x 10°, while in
set B it is 3.8 x 107. All simulations last 50 units of time which corresponds to nearly 300 eddy
turnaround times 7,44, based on the time integrated maximum vorticity, or 30 7,,,,; based on the time
integrated rms vorticity. At that stage the energy has already reached the largest scales of the flow
as shown in Sec. III.

The forcing wavenumber is chosen in order to maximise the extent of the inverse energy cascade
while preserving an accurate representation of the direct enstrophy cascade. According to Scott?
a strong inverse cascade is approached for k./k; ~ 64, where k., is the maximum resolved
wavenumber and kg is the forcing wavenumber. This gives kr = 32 for set A and k; = 64 for set B.
For comparison, Boffetta'® used a ratio of 55 for the highest resolution and Vallgren'” used a ratio
of 25. All the numerical parameters are summarised in Table I. Unless stated, all data presented in
the paper are produced from averaging over the 25 simulations of each set. We verified that 25 runs
are enough to ensure statistical convergence up to the second statistical moments (variance) for both
energy and enstrophy.

Ill. RESULTS
A. General flow evolution

Figure 1 presents several stages in the evolution of the flow, at t = 1, 5, 10, and 50, for one
representative simulation in set B. In the earliest stage shown, the direct effect of the forcing is
evident in the characteristic blurry honeycomb pattern of the narrow-band forcing; the flow has not
yet had time to evolve significantly. By the next stage, one can already see vortices emerging and
growing in a background composed of debris and filaments of vorticity. The later stages are broadly
similar, albeit with more fine-scale structure and marginally more organised large-scale vortices
(which contain more than 70% of the total enstrophy by # = 50) as the energy grows by cascading
slowly to large scales.

The temporal evolution of both energy £ and enstrophy Z (ensemble averaged) is plotted in
Figure 2 for the two sets of simulations together with the theoretical growth expected for an inviscid
fluid, i.e., an enstrophy growth rate of n = 7.8957 which corresponds to an energy growth rate of
& = 0.0077409. For the duration of the simulation, energy grows close to the imposed rate while
being slightly dissipated over the times considered. At ¢ = 50, the value of the energy is only 5.4%
smaller than the theoretical value for set A and 5.8% smaller for set B. On the other hand, enstrophy
grows at the imposed rate up to ¢ = 4 at which time the direct cascade reaches the smallest resolved
scales and vorticity begins to be dissipated through surgery. Thereafter, a smaller linear growth in



015101-5 Fontane, Dritschel, and Scott Phys. Fluids 25, 015101 (2013)

FIG. 1. The vorticity field w at times ¢ = 1, 5, 10, and 50 from left to right and top to bottom. A linear grey scale is used
with white being the highest level of vorticity value and black being the lowest. The fields are taken from one simulation in
set B and only a sixteenth of the domain is represented.

enstrophy continues until late times due to a small but non-zero fraction of the input enstrophy
cascading to large scales (consistent with the energy cascading to large scales as discussed next).

B. Spectral evolution

Figure 3 shows the evolution of the enstrophy spectrum for both sets. Curves are plotted at
times 1, 5, 10, and then every 10 time units up to the final time of the simulations. After t = 5,
which is shortly after the time when the enstrophy reaches the smallest scales of the flow and starts
being dissipated, the spectra converge to a fixed form and do not evolve further in time except at
small wavenumbers where the inverse cascade continues to build energy at large scales. The part of
the spectrum lying in the enstrophy cascade range, i.e., in wavenumbers larger than ky, exhibits an
intermediate k~! spectrum, albeit with a steepening just to the right of the forcing, possibly due again
to presence of coherent vortices. However, the wavenumber ranges here are too short to make any
comparison with theoretical prediction meaningful. For wavenumbers lying in the inverse energy
cascade range, i.e., wavenumbers smaller than kg, the spectra exhibit a plateau between the forcing
wavenumber kr and a smaller wavenumber k,(#) corresponding to the front of the inverse cascade.
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FIG. 2. Temporal evolution of energy (solid) and enstrophy (dashed) for set A (a) and set B (b). The dashed-dotted lines

For k < kp, the enstrophy drops sharply with a slope which, at intermediate times, is close to 4,
but which decreases as soon as the energy at the domain scale becomes significant, this occurring
around 7 = 20 for set A and around ¢ = 30 for set B. In the meantime, k;, decreases and the length of
the plateau increases. The presence of the plateau, which corresponds to an energy spectrum of k=2,
is in line with the results of Scott’> and Vallgren'” and provides further evidence that Kraichnan’s

similarity hypotheses is not valid.
The spectra are next fit to a simple analytical form to examine their evolution more precisely.
Given the observed shape of the enstrophy spectra, we propose the following analytical form:
c(k/kp)* 0<k<k
Z(k) = , (2)
c ky <k < kf
where k; is an unknown time dependent wavenumber corresponding to the front of the enstrophy
plateau moving up-scale and c is the constant value of the plateau. This model is limited to wavenum-
bers smaller than the forcing wavenumber since for k > kr the observed spectra are approximately
independent of time. We fit the numerical spectra up to k; by simply integrating the analytical

FIG. 3. Enstrophy spectra at increasing times ¢ = 1, 5, 10, 20, 30, 40, and 50 (from right to left) for set A (a) and set B (b).

Spectra are normalised by total enstrophy.
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FIG. 4. Time evolution of the coefficients &, (a) and ¢ (b) corresponding to the analytical model (2): the dashed line for set
A and the dashed-dotted lines for set B. (a) A logarithmic scale is used and the solid lines show the theoretical prediction.

spectrum (2) to obtain the total energy and enstrophy in the range k < ky:

k
Z; = / ' Z(kydk = ¢ (kf — gkb) , (3a)
0
Er = / Y Z(k2dk = <i - i) (3b)
=, ~ Gk k)

The parameters k; and ¢ are then determined by equating £, and Z; to the measured energy
and enstrophy in the same range.

The temporal evolution of k; and ¢, determined in this way, is shown in Figure 4 for times up
to t = 30, corresponding to when the flow evolution begins to be influenced by the finite domain.
Note that for constant ¢, the measured linear growth in energy would correspond to k;, ~ =, for k;
&K ky; notably, this is a faster growth at large scales than the estimate 32 predicted by Kraichnan.?
Figure 4(a) shows that k, does indeed scale close to #~!; the slight departure at later times is associated
with the slight increase in ¢ as the domain size is approached. At these times, the large-scale part
of the spectra that drops sharply for 0 < k < k;, starts to become shallower than k*, and the spectral
shape is no longer accurately represented by the analytical form (2).

We emphasize that the values of k;, and c are not obtained by any curve fitting to the measured
spectrum; rather they are determined uniquely by equating the total measured energy and enstrophy
in the region k < ks with the quantities £, and Z from (3). As long as the finite size of the simulation
box can be ignored, the analytical form (2) accurately represents the enstrophy spectra for k < k.
Both the analytical form and the measured spectrum are shown superposed in Figure 5 and can be
seen to be in close agreement in this range.

C. Vortex population characteristics

We now consider the population of coherent vortices that emerge at the forcing scale and grow
through multiple interactions. These are good candidates for the deviation of the present results from
the theoretical predictions. Indeed, Kraichnan derived his model assuming that energy transfers occur
locally in spectral space through local triad interactions. His model does not take into account the
effect of coherent vortices, which are localised in physical space and therefore are widely distributed
in spectral space. This was argued previously by Dritschel et al.?’ in the case of freely-decaying
turbulence, for which it was shown that vortices are responsible for the (there strong) deviation
between their numerical results and Batchelor’s theory. In forced turbulence, Danilov and Gurarie, !
and Vallgren'” also found that the effect of coherent vortices is significant and, in particular, that
the dominant triad interactions are highly non-local. Here we extend their analyses by examining
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FIG. 5. Superposition of the numerical (solid) and analytical (dashed-dotted) enstrophy spectra for set A at time ¢t = 15 (left)
and set B at time # = 20 (right). Spectra are normalised by total enstrophy.

characteristics of the vortex population, in particular their number density and their core vorticity as
a function of their size.

We consider a decomposition of the full vorticity field into a component associated with coherent
vortices and a residual. To define the coherent part we first identify contiguous regions of vorticity
whose magnitude is above the rms value, following the method described in Dritschel et al.?” for the
freely decaying case. We then consider the shape of each contiguous region. In the freely decaying
case this was done simply by considering the aspect ratio of an ellipse fit to each region. In the forced
case, however, vortices are often highly distorted by the forcing field. A more appropriate criterion,
we found, is

(/s a)dA)2

" 27 [[, 0 x —x,dA

1
xvz—//aﬂdi and Zv://wsz (5)
Zu A A

are the centroid and enstrophy of the region. Note that 0 < §, < 1 and that §, = 1 corresponds to
a circular patch of uniform vorticity. This criterion permits vortices to be more distorted, so long
as they have a concentrated centre of high vorticity (as is often found). The integrals in Eq. (4) are
evaluated with the full vorticity field on the ultra-fine re-contouring grid, summing over contiguous
regions on this grid. Figure 6 illustrates the vortex identification procedure for a representative
simulation in set B; the original vorticity field is shown on the left, the coherent vortices in the
middle, and the residual on the right.

With this decomposition, enstrophy spectra associated with each field are obtained, shown in
Figure 7 for set A at r = 15 and set B at t = 20. As expected, most of the energy and enstrophy is
contained within the field of coherent vortices, except at the very smallest scales. At these times,
the population of coherent vortices accounts for 72% of the total enstrophy. Moreover, we find
that the vortex population exhibits a k=2 energy spectrum (k~2Z(k)) in the inverse cascade range
while the background residual follows Kraichnan’s prediction with a spectrum ok, indicating a
structureless field of filamentary debris, consistent with Figure 6.

We next examine the number density distribution of the vortex population. Benzi et al.*® argued
that algebraic energy spectra of the form k=7 for p > 3 may be associated with the emergence of a
distribution of vortex sizes, i.e., an algebraic number density distribution n,(A) = ¢ A™9, provided
that the average vorticity w, in each vortex does not vary significantly with its area A. We can write

> 0.5, 4)

v

where
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FIG. 6. Decomposition of the vorticity field (left) into coherent (middle) and incoherent part (right). The images are
screen-shots of one of the simulations in set B at time # = 10. Only one sixteenth of the domain is shown.

the coherent enstrophy as
1
Zun = [ Zatdk = [ @t Am(araa, ©)

where A is the size of the domain considered. Identifying A with k=2, it follows that
Zeon(k) oc k=424, 7

Figure 8 shows the characteristics of the vortex population for set B, averaged over two periods:
from ¢t = 5 to t = 30 and from ¢ = 30 to t = 50. Considering the vortex number density distribution,
one can identify a change in the slope occurring at an area that corresponds to the scale of forcing,
ie, Ay~ k;2. For vortices having an area smaller than Ay, the number density distribution scales
like A~!> over two decades. These trends are not significantly modified by the finite size effects
from t = 30 as curves superimpose. The average vorticity @, shown in the lower panel grows with
vortex area, though varies by less than a factor of about 3 from the smallest to the largest areas.

By (7), the number density distribution 7n,(A) A~ would correspond to the (coherent)
enstrophy spectrum Z,;, & k=2 in the enstrophy inertial range, a form consistent with a prediction of
Saffman®' who considered the effect of discontinuities in the vorticity field. For big vortices having
an area larger than Ay, the distribution seems to scale like A~25_ consistent with the k° slope observed
in the energy inertial range. However, because the separation between the forcing scale and the box

FIG. 7. Decomposition of the enstrophy spectra (solid) into coherent (dashed-dotted) and incoherent (dashed) parts. These
figures correspond to set A at # = 15 (left) and set B at # = 20 (right). Spectra are normalised by total enstrophy.
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FIG. 8. Vortex population characteristics for set B: vortex number (left) and average vorticity (right) distribution function of
vortex area.

size is relatively limited here, the range of areas is too small to draw any definite conclusion. It
is noteworthy that the size of the largest vortex appears to be significantly smaller than would be
expected on the basis of k,. Moreover, the systematic growth in the average vorticity with vortex area
observed in Figure 8, especially at large areas, puts in question the simple relation between number
density n,(A) and enstrophy spectrum Z.., (k) argued by Benzi et al.*° for a dilute population of
vortices having comparable vorticity.

IV. CONCLUSIONS

We have examined novel high-resolution numerical simulations of forced two-dimensional
turbulence to investigate further the validity of Kraichnan’s classical theory.> Our approach differs
from previous numerical studies in three key respects. First, we have made use of a powerful
hybrid numerical algorithm, CLAM, ! particularly suited to the simulation of geophysical flows and
two-dimensional turbulence, and previously demonstrated to be much more efficient than standard
pseudo-spectral methods commonly used.”> Second, no large-scale dissipation has been used to
avoid any bias in the energy cascade:'""!”-!8 in place of temporal averaging, ensemble averages have
been used to provide accurate statistics, consistent with Kraichnan’s theory. Third, the ratio k../ky
between the maximum resolved wavenumber and the forcing wavenumber is sufficiently large (here
64), to give room for the emergence of a vortex population which, in time, dominates energetically,
enables a strong inverse energy cascade to develop, and steepens the large-scale energy spectrum
via highly-nonlocal interactions. The lack of large-scale dissipation means that our simulations
are not stationary in the strict sense, because energy grows continuously, but may be considered
quasi-stationary in the sense that the energy plateau remains at a constant level, with only the front
advancing to the left in time. The energy distribution in a subrange of the inverse cascade is thus
stationary. In fact, it is precisely this quasi-stationary situation that was originally considered by
Kraichnan, in which energy cascades undissipated towards ever large scales.

The results obtained in the present work confirm the results of Scott and the more recent results
of Vallgren:'” in the energy inertial range the observed enstrophy spectrum is Z(k) o k°, rather than
the k' spectrum predicted by Kraichnan. This k° spectrum is associated with a transfer of energy
to large scales that scales like #~!, in contrast to the =2 prediction of Kraichnan. We propose a
simple analytical form for the enstrophy spectrum at scales larger than the forcing scale that matches
closely the numerically obtained spectrum.
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The deviation from Kraichnan’s scalings is associated with the emergence of a population of
vortices that violates Kraichnan’s assumption of local triad interactions. Kraichnan’s scalings can
of course be obtained when the forcing is closer to the truncation scale than here, or when a linear
drag is used to reach a stationary state, as both of these effects act to suppress vortex formation at
the forcing scale. When these effects are absent, however, the formation of vortices at the forcing
scale leads to a distortion of the inverse cascade and the above steepening of the energy spectrum.
To demonstrate the role of coherent vortices, a vortex identification criterion was used to separate
the full vorticity field into coherent and residual parts. The coherent part was shown to contain about
90% of the total energy of the flow and to exhibit a k” enstrophy spectrum in the energy inertial
range. The spectrum associated with the residual part follows Kraichnan’s k'3 prediction.

It could be argued that the steepening of the inverse cascade observed here is due simply to
an insufficient length of the inertial range, which in the experiments discussed above spans slightly
less than one decade in wavenumber space. By analogy, in studies of the direct enstrophy cascade,
energy spectra steeper than K~ may be obtained when the high wavenumber inertial range is short
and vortices that form near the forcing scale dominate the spectrum; as the inertial range is increased
the influence of the vortices diminishes and the k=3 spectrum is recovered. However, in this regard,
a fundamental asymmetry between the role of coherent vortices in the direct and inverse cascades
should be noted, namely, that due to the tendency of vortices to merge and grow in size they have
a more persistent effect on the inverse cascade than on the direct cascade. Vortices created at the
forcing scale eventually populate a range of scales larger than the forcing scale, populating the
inverse cascade. In contrast to the case of the direct cascade, therefore, it appears less likely that
simply increasing the length of the inverse cascade will diminish the influence of coherent vortices
and recover the Kraichnan scaling.

To emphasize the distribution of vortices across scales, the distribution of enstrophy in spectral
space was also related to the number density distribution of coherent vortices in physical space,
following arguments due to Benzi et al.’° The range in vortex area is too small to be conclusive but
the scaling of the vortex number density distribution appears to be close to 1,,(A) o A~2, consistent
with the scaling of k° for the enstrophy in spectral space. Extending the range of vortex area would
require a significant increase in both resolution and forcing wavenumber, unfortunately well beyond
the capabilities of current computers.

ACKNOWLEDGMENTS

Jérdme Fontane is supported by the European Community in the framework of the CONVECT
project under Grant No. PIEF-GA-2008-221003.

I'D. Dritschel and J. Fontane, “The combined Lagrangian advection method,” J. Comput. Phys. 229, 5408-5417 (2010).

2R. Scott, “Nonrobustness of the two-dimensional turbulent inverse cascade,” Phys. Rev. E 75, 046301 (2007).

3R. Kraichnan, “Inertial ranges in two-dimensional turbulence,” Phys. Fluids 10, 1417-1423 (1967).

4R. Kraichnan, “Inertial-range transfer in two- and three-dimensional turbulence,” J. Fluid Mech. 47, 513-524
(1971).

5U. Frisch and P. Sulem, “Numerical simulation of the inverse cascade in two-dimensional turbulence,” Phys. Fluids 27,
1921-1923 (1984).

6M. Maltrud and G. Vallis, “Energy and enstrophy transfer in numerical simulations of two-dimensional turbulence,” Phys.
Fluids 5, 1760-1775 (1993).

7L. Smith and V. Yakhot, “Bose condensation and small-scale structure generation in a random force driven 2D turbulence,”
Phys. Rev. Lett. 71, 352-355 (1993).

8. Smith and V. Yakhot, “Finite-size effect in forced two-dimensional turbulence,” J. Fluid Mech. 274, 115-138 (1994).

V. Borue, “Spectral exponent of enstrophy cascade in stationary two-dimensional homogeneous turbulence,” Phys. Rev.
Lett. 71, 3967-3970 (1993).

10, Borue, “Inverse energy cascade in stationary two-dimensional homogeneous turbulence,” Phys. Rev. Lett. 72, 1475-1478
(1994).

1S, Danilov and D. Gurarie, “Forced two-dimensional turbulence in spectral and physical space,” Phys. Rev. E 63, 061208
(2001).

125, Chen, R. Ecke, G. Eyink, X. Wang, and Z. Xiao, “Physical mechanism of the two-dimensional cascade,” Phys. Rev.
Lett. 91, 214501 (2003).

13J. Paret and P. Tabeling, “Experimental observation of the two-dimensional inverse energy cascade,” Phys. Rev. Lett. 79,
41624165 (1997).



015101-12 Fontane, Dritschel, and Scott Phys. Fluids 25, 015101 (2013)

14J. Paret and P. Tabeling, “Intermittency in the two-dimensional inverse cascade of energy: Experimental observations,”
Phys. Fluids 10, 3126-3136 (1998).

157, Paret, M. Jullien, and P. Tabeling, “Vorticity statistics in the two-dimensional entrophy cascade,” Phys. Rev. Lett. 83,
3418-3421 (1999).

16C. Tran and J. Bowman, “Robustness of the inverse cascade in two-dimensional turbulence,” Phys. Rev. E 69, 036303
(2004).

17 A. Vallgren, “Infrared number dependency of the two-dimensional inverse energy cascade,” J. Fluid Mech. 667, 463473
(2011).

185, Sukoriansky, B. Galperin, and A. Chekhlov, “Large scale drag representation in simulations of two-dimensional
turbulence,” Phys. Fluids 11, 3043-3053 (1999).

19G. Boffetta, “Energy and enstrophy fluxes in the double cascade of two-dimensional turbulence,” J. Fluid Mech. 589,
253-260 (2007).

20G. Boffetta and S. Musacchio, “Evidence for the double cascade scenario in two-dimensional turbulence,” Phys. Rev. E
82, 016307 (2010).

2l'In addition to the cases involving frictional dissipation, Boffetta and Musacchio considered a single high resolution
calculation with no friction in the quasi-stationary regime. The results of that calculation are difficult to discern (see their
Figure 2) but careful examination again suggests an energy spectrum closer to k=2, consistent with the present paper; this
conclusion was not drawn in that paper.

22D, Dritschel, “Contour surgery: A topological reconnection scheme for extended integrations using contour dynamics,” J.
Comput. Phys. 77, 240-266 (1988).

23D. Dritschel, “Contour dynamics and contour surgery: Numerical algorithms for extended, high-resolution modelling of
vortex dynamics in two-dimensional, inviscid, incompressible flows,” Comput. Phys. Rep. 10, 77-146 (1989).

24D. Dritschel and R. Scott, “On the simulation of nearly inviscid two-dimensional turbulence,” J. Comput. Phys. 228,
2707-2711 (2009).

25]. Fontane and D. Dritschel, “The HyperCASL algorithm: A new approach to the numerical simulation of geophysical
flows,” J. Comput. Phys. 228, 6411-6425 (2009).

26D. Dritschel and M. Ambaum, “A contour-advective semi-Lagrangian numerical algorithm for simulating fine-scale
conservative dynamical fields,” Q. J. R. Meteorol. Soc. 123, 1097-1130 (1997).

27D, Dritschel and M. Ambaum, “The diabatic contour advective semi-Lagrangian algorithm,” Mon. Weather Rev. 134,
2503-2514 (2006).

28D. Dritschel, and J. Fontane, “The HyperCASL algorithm,” in Proceedings of IUTAM Symposium on Turbulence in the
Atmosphere and Oceans (Springer, 2010).

2D, Dritschel, R. Scott, C. Macaskill, G. Gottwald, and C. Tran, “A unifying scaling theory for vortex dynamics in
two-dimensional turbulence,” Phys. Rev. Lett. 101, 094501 (2008).

30R. Benzi, M. Colella, M. Briscolini, and P. Santangelo, “A simple point vortex model for two-dimensional decaying
turbulence,” Phys. Fluids A 4, 1036-1039 (1992).

31'p. Saffman, “On the spectrum and decay of random two-dimensional vorticity distributions at large Reynolds number,”
Stud. Appl. Math. 50, 377-383 (1971).

32G. Batchelor, “Computation of the energy spectrum in homogeneous two-dimensional turbulence,” Phys. Fluids 12,
11-233-11-239 (1969).

33 C. Pasquero and G. Falkovich, “Stationary spectrum of vorticity cascade in two-dimensional turbulence,” Phys. Rev. E 65,
056305 (2002).

34 M. Rutgers, “Forced 2D turbulence: Experimental evidence of simultaneous inverse energy and forward enstrophy cas-
cades,” Phys. Rev. Lett. 81, 22442247 (1998).



