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[1] A method for extracting time-varying oscillatory motions
from time series records is applied to Lagrangian trajectories
from a numerical model of eddies generated by an unstable
equivalent barotropic jet on a beta plane. An oscillation in a
Lagrangian trajectory is represented mathematically as the
signal traced out as a particle orbits a time-varying ellipse,
a model which captures wavelike motions as well as the
displacement signal of a particle trapped in an evolving
vortex. Such oscillatory features can be separated from the
turbulent background flow through an analysis founded
upon a complex-valued wavelet transform of the trajectory.
Application of the method to a set of one hundred modeled
trajectories shows that the oscillatory motions of Lagrangian
particles orbiting vortex cores appear to be extracted very
well by the method, which depends upon only a handful of
free parameters and which requires no operator intervention.
Furthermore, vortex motions are clearly distinguished from
wavelike meandering of the jet—the former are high
frequency, nearly circular signals, while the latter are linear
in polarization and at much lower frequencies. This suggests
that the proposed method can be useful for identifying and
studying vortex and wave properties in large Lagrangian
datasets. In particular, the eccentricity of the oscillatory
displacement signals, a quantity which is not normally
considered in Lagrangian studies, emerges as an informative
diagnostic for characterizing qualitatively different types of
motion. Citation: Lilly, J. M., R. K. Scott, and S. C. Olhede
(2011), Extracting waves and vortices from Lagrangian trajectories,
Geophys. Res. Lett., 38, L23605, doi:10.1029/2011GL049727.

1. Introduction

[2] Understanding the role of long-lived eddies in the
global ocean circulation is a major topic in oceanographic
research. Lagrangian floats and drifters constitute an invalu-
able platform for observing the relatively small spatial and
temporal scales associated with such vortices, and indeed
many dozens of publications have examined vortex properties
from regional Lagrangian experiments [e.g., Armi et al., 1989;
Flament et al., 2001; Shoosmith et al., 2005]. Systematic
investigation of the now-extensive historical set of Lagrang-
ian drifter and float trajectories is, however, hampered by a
technical limitation—the lack of a reliable and precise method
to meaningfully separate vortex motions from the background
flow. Various approaches have been proposed [e.g., Armi

et al., 1989; Flament et al., 2001; Lankhorst, 2006]. How-
ever, the fact that this problem remains unsolved is evidenced
by the fact that large-scale studies either continue to rely on
traditional subjective identification [e.g., Shoosmith et al.,
2005], or else to focus on measures of the effect of vortices
on trajectories rather than the properties of the vortices
themselves [Griffa et al., 2008].
[3] Recently a new and general method has been developed

[Lilly and Gascard, 2006; Lilly and Olhede, 2009a, 2009b,
����@� grounded in nonstationary time series theory, which
permits the automated identification, extraction, and analysis
of time-varying oscillatory features of unknown frequency—
such as the signature of a particle trapped in a vortex or
advected by a wave. Here the method is applied to Lagrangian
trajectories from a numerical simulation in order to illustrate
the possibility of accurately extracting and distinguishing
vortex currents and wavelike motions. All relevant analysis
software is freely distributed to the community as a part of
a Matlab® toolbox, available at http://www.jmlilly.net.

2. Numerical Model

[4] For an idealized numerical model generating eddies as
well as background variability, we choose an equivalent
barotropic quasigeostrophic model of an initially unstable jet
on a beta plane. The model integrates the equation for con-
servation of potential vorticity following the geostrophic
flow
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where F is the streamfunction, b ≡ df/dJ is the derivative of
the Coriolis frequency f with latitude , the parameter LD is the
Rossby radius of deformation, and k is the vertical unit
vector. The model is initialized at time t = 0 with an eastward
jet of strength U and width Y having a profile, with i being
the eastward unit vector, given by
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which corresponds to a maximum initial vorticity anomaly
within the jet of zo ≡ pU/(2Y).
[5] Parameters are chosen to give a strong jet with a

deformation radius that is small compared to the radius of
the earth. The central latitude (y = 0) at the jet axis is set to
J = 45° N, the jet width 2Y and deformation radius LD are
both 80 km, and the maximum initial velocity is 2.08 m s−1.
These choices give a jet Rossby number Ro ≡ zo/f = 0.80,
and a value of bLD/zo of 1/(20p) ≈ 1/60—meaning that
the jet relative vorticity anomaly is much larger than the
change in planetary vorticity over one deformation radius,
or over the jet width. This system is a convenient way
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of generating eddies, and is not intended to represent a
particular oceanic current. The initial condition is let to
freely evolve for 360 days with a time step of 5 × 10−5 ×
360 days ≈ 26 minutes in a domain of length 2p × 400 ≈
2500 km on each side. The model is seeded with 100 drifters
that all initially lie along the y = 0 line, sampled every 10
time steps or 4.3 hours.
[6] A snapshot of the model is shown in Figure 1, together

with overlays of ellipses characterizing oscillatory Lagrangian
variability from our subsequent analysis. Vortices are gener-
ated by barotropic instability and then tend to drift westward
as well as meridionally due to nonlinear beta drift [e.g., Lam
and Dritschel, 2001], with anticyclones propagating equa-
torward and cyclones propagating poleward. Dipole interac-
tions are also seen, as captured by the red/blue pair of ellipses
in the upper left quadrant of Figure 1, although these tend
to eventually break down. An informative animation of
snapshots such as the one shown in Figure 1 over the entire
model run duration, but with the ellipses color coded by
drifter number for visual clarity, is included as a part of
the auxiliary material.1 Trajectories are shown in Figure 2a,
with the dominating presence of vortex motions apparent

as tightly looping or cycloidal curves reaching northwest-
ward and southwestward.

3. Analysis Method

[7] A modulated elliptical signal, introduced by Lilly and
Olhede [2010], is a time-varying oscillation in two dimen-
sions. Such a signal is expressed in matrix form as

ex tð Þ ¼ cos q tð Þ −sin q tð Þ
sin q tð Þ cos q tð Þ

& '
a tð Þcos ! tð Þ
b tð Þsin ! tð Þ

& '
ð3Þ

which is the parametric equation for a particle orbiting a
time-varying ellipse with semi-major and semi-minor axes
a(t) and jb(t)j, where a(t) > jb(t)j > 0, and with its major axis
inclined at an angle q(t) with respect to the x-axis. The phase
f(t) gives the instantaneous position of the particle along the
periphery of ellipse. The particle orbits the ellipse in the
mathematically positive or negative direction according to
the sign of b(t).
[8] Details of the modulated elliptical signal, including

conditions for associating a unique set of time-varying
ellipse parameters to a given oscillatory signal ex tð Þ , are
discussed by Lilly and Olhede [2010]. An important special
case is that of a familiar pure sinusoidal oscillation in two
dimensions; however, the model (3) is considerably more
general. A practical constraint is that the ellipse properties
should vary slowly compared with the timescale 2p/ddtf (t)
over which the particle orbits the ellipse, in order that the
subsequent analysis method have small errors [Lilly and
Olhede, ����@�
[9] The modulated elliptical signal with slowly-varying

ellipse parameters is a good model for the displacement
signal of a particle trapped in an evolving vortex. This class
of signals includes Lagrangian displacements due to steady
circular vortex solutions, steadily strained or sheared ellip-
tical anticyclones [Ruddick, 1987], and low-frequency peri-
odic oscillations of an elliptical shallow water vortex
[Young, 1986; Holm, 1991], all observed with instruments
that may be experiencing a drift through the vortex in addi-
tion to the vortex currents themselves.
[10] Ellipse size, shape, and frequency are usefully char-

acterized as follows. The ellipse shape is described by the
eccentricity ɛ tð Þ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−b2 tð Þ=a2 tð Þ

p
. The geometric mean

radius and geometric mean velocity are defined as
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a tð Þjb tð Þj

p
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where the latter quantity is found by writing the velocity
eu tð Þ≡ d

dtex tð Þ as a time-varying ellipse of the form (3) but with
a different set of ellipse parameters, denoted au(t), bu(t), etc.;
this may be accomplished algebraically from the parameters
of ex tð Þ , see Appendix E of Lilly and Gascard [2006]. The
ratio of the two quantities V(t) and R(t) defines a frequency
v(t) ≡ V(t)/R(t) which we call the geometric frequency.
[11] A Lagrangian trajectory can then be represented as

the sum of a number M of different oscillatory displacement
signals ex mf g tð Þ, each of the form (3), plus a residual:

x tð Þ ¼ x tð Þ
y tð Þ

& '
¼

XM

m¼1

ex mf g tð Þ þ """"" tð Þ: ð5Þ

Figure 1. A snapshot of an unstable eastward equivalent
barotropic jet on a mid-latitude beta plane at day 240, with
domain details as discussed in the text. The shading is the
absolute value of the quasigeostrophic potential vorticity
appearing in (1). Estimated instantaneous ellipses due to
Lagrangian oscillatory motions, created as in Section 3, are
overlaid. Highly eccentric ellipses with eccentricity ɛ >
0.95 are shown in green, while positively-rotating and nega-
tively-rotating ellipses with ɛ ≤ 0.95 are shown in red and
blue, respectively. Dots mark the instantaneous locations of
100 Lagrangian particles initially deployed along the jet
axis. Black dots indicate particles in which an oscillatory
signal is detected at this moment, while white dots indicate
the locations of other particles.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL049727.
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The residual signal """""(t) includes the turbulent background
flow, as well as any non-oscillatory component such as a
mean flow or the systematic self-propagation tendency of a
vortex. The oscillatory signals may be of finite duration and
may be overlapping in time, so that zero, one, or more than
one such signal may be present at each moment.
[12] The problem is then to estimate the oscillations

ex mf g tð Þ given an observed trajectory x(t), and from these
estimates to characterize the M different ellipse parameters
a{m}(t), b{m}(t), q{m}(t), f{m}(t), and so forth. This is accom-
plished using a method called “multivariate wavelet ridge
analysis” [Lilly and Olhede, 2009a, 2009b, ����@� leading
to estimates x̂ mf g

y tð Þ of the M modulated oscillations in each
trajectory; here the subscript “y” indicates the choice of filter

or wavelet y(t) used in the analysis. A discussion of the basic
idea and implementation of the method, together with details
of the parameter settings used here, are provided in
a technical text file that is included in the auxiliary material.
[13] From the method, we obtain estimates of ellipse

properties at each moment. As an example, observe the good
agreement in Figure 1 between the ellipses, inferred non-
locally from individual particles, and the Eulerian structures
in the potential vorticity field.

4. Results

[14] The results of this analysis are shown in Figures 2
and 3. Subtracting the sum over all M estimated oscilla-
tions in each time series x(t) leads to an estimate "̂"""" tð Þ of the

Figure 2. (a) All Lagrangian trajectories from the unstable barotropic jet simulation, dispersing from their initial location
at y = 0, with each trajectory in a different color. (b) The residual curves from the wavelet ridge analysis. (c, d) Snapshots
ofellipses corresponding to the ellipse properties estimated from the wavelet ridge analysis. In Figures 2c and 2d, highly
eccentric ellipses with ɛ > 0.95—typically very low-frequency signals—are plotted with a time step of 1/2 the estimated
period, while other ellipses are plotted with the time step of every 3 estimated periods. The highly eccentric ellipses are
plotted in Figure 2c in green, while the remaining anticyclonically rotating ellipses and cyclonically rotating ellipses are
plotted in blue and red, respectively. Finally in Figure 2d, the ellipses are colored according to log10 of the estimated
geometric period 2p/$(t), measured in days, as indicated in the color bar.

LILLY ET AL.: WAVES AND VORTICES L23605L23605

3 of 5



non-oscillatory background flow, Figure 2b. Comparison
with the original time series, Figure 2a, shows that the
tightly looping motions associated with vortices appear to
have been nearly completely removed. What remains behind
is observed to consist of curving but disorganized motions,
together with systematic motion associated with the jet
and with eddy drift. Even cycloidal features in Figure 2a,
typically low-frequency motion of a particle on the far flank
of an eddy, are largely removed. The ability to perform
such a separation on this relative large set of drifters, with
no intervention by the analyst, by itself constitutes a tech-
nical breakthrough.
[15] Instantaneous ellipses associated with the estimated

oscillatory signals are shown in Figures 2c and 2d. Coloring
the ellipses according to their degree of eccentricity and
sense of rotation in Figure 2c reveals nearly exclusively
cyclonic motions (red) on the poleward side of the jet and
anticyclonic motions (blue) on the equatorward side. The
separation of vortices by their polarity in this system is due
to nonlinear beta drift acting on eddies generated within
the jet core during the initial adjustment. Close inspection
reveals some very small circles of opposite color inside some
of the eddies; as discussed in the technical appendix, these
represent weak, low-frequency signals, likely associated with

the presence of exterior opposing vorticity anomalies.
Another type of variability, nearly linear in polarization and
oriented meridionally, is observed along the jet axis (green).
[16] A time scale distinction between these two different

types of motions can be seen in Figure 2d, where the color
coding represents the instantaneous oscillation period 2p/$(t)
as deduced from the geometric frequency $(t). The highly
eccentric motions along the jet axis are seen to be an order
of magnitude lower in frequency than the vortex motions. The
former arise as particles in the jet are swept eastward through
meanders caused by the deflection of the jet axis by low-
frequency Rossby wave variability, as is readily apparent in
Animation S1 in the auxiliary material.
[17] A more detailed view of the properties of the esti-

mated elliptical signals is found in the distribution plots on
the radius/velocity plane of Figure 3. A histogram on the
geometric radius R(t)/geometric velocity V(t) plane is formed
in Figure 3a by binning all time points associated with each
estimated modulated oscillation in all 100 trajectories. Note
that the slope V(t)/R(t) on this plane is the geometric fre-
quency $(t). This histogram clearly reveals a Rankine-type
vortex profile—a solid-body core plus 1/r decay—for cyclo-
nic motions, V(t) > 0. As may be expected, the solid-body
histogram peak lies along the slope corresponding to the

Figure 3. Statistics of the estimated modulated elliptical signals shown on the geometric radius/velocity or R/V plane. Pos-
itive and negative velocities correspond to cyclonic and anticyclonic motions respectively. (a) The histogram on the R/V
plane occupied by all estimated oscillatory signals from all 100 trajectories, with a logarithmic color axis. (b) The median
eccentricity ɛ in each bin. In Figures 3a and 3b, the sloping gray lines correspond to ±zo/2, the geometric frequency value
corresponding (for an eddy in solid-body rotation) to the maximum initial jet relative vorticity anomaly. The black lines are
plus or minus the maximum and minimum cutoff frequencies in the analysis.
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maximum vorticity anomaly of the initial unstable jet pro-
file (gray line); because under the assumption of solid-
body rotation we have z = 2V/R, this occurs at a frequency
of zo/2 = 0.40f.
[18] This vortex profile pattern emerges primarily through

the superposition of a number of different Lagrangian par-
ticles at different locations in different eddies. On the anti-
cyclonic side the pattern is less evident, since by chance,
more particles have ended up in cyclonic eddies compared to
anticyclonic eddies in this simulation; this asymmetry is a
reminder of the well-known slow convergence of Lagrangian
statistics owing to long-term particle trapping [e.g., Pasquero
et al., 2002].
[19] The low-frequency motions are evident as the sym-

metric maxima in Figure 3a around the horizontal line V = 0.
The median eccentricity ɛ in each bin, Figure 3b, shows that
the motions in the vortex profile are nearly circular in
polarization, while the low-frequency motions are nearly
linear, confirming that these two regions on the R/V plane
correspond to the two types of features seen in Figures 2c
and 2d. An important point is that the nearly circular vor-
tex motions and the highly eccentric low-frequency motions
occupy almost non-overlapping regions of the radius/veloc-
ity plane, apart from very large-scale (say ∼50 km radius)
and low-frequency motions, which may either be generated
by jet meander or by circular oscillatory motions on the far
flank of a vortex.

5. Conclusions

[20] This paper has applied a new analysis method—
multivariate wavelet ridge analysis—to the identification of
oscillatory motions in Lagrangian trajectories from a
numerical simulation of an unstable jet. It is shown that
vortex motions can be effectively extracted from the trajec-
tories and described locally in terms of their time-varying
frequency content and ellipse geometry. Meridional mean-
dering of the jet axis constitutes another strong oscillatory
signal in this model, but these motions are clearly distin-
guished from the vortex motions on account of their much
lower frequency, nearly linear shape polarization, and dif-
ferent location in radius/velocity space. The method is
therefore able to unravel the superposition of different pro-
cesses in individual trajectories, making possible the inves-
tigation of these separate processes in isolation from one
another. These results serve as validation supporting the
application of this method to large-scale observational stud-
ies. Not addressed here, but left to the future, are a detailed
treatment of stochastic errors, the impact of measurement

noise, comparison between the Eulerian and Lagrangian
perspectives, and a consideration of method performance for
other types of motions such as inertial oscillations or bar-
oclinic instability waves.
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GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/,

Text S1

The extraction of individual oscillatory signals from the modeled Lagrangian trajectories

is accomplished using a method called “multivariate wavelet ridge analysis” [Lilly and

Olhede, 2009a, 2011]. All numerical code associated with this paper is distributed as

part of a Matlab R© toolbox called Jlab, available at http://www.jmlilly.net. The file

makefigs vortex provides the exact processing steps as well as scripts to generate all

figures. This file describes the basic idea and presents an example. Equation numbers

herein refer to the main text.

An analytic wavelet is a time/frequency localized filter which has vanishing support on

negative Fourier frequencies, and which is therefore complex-valued in the time domain,

see e.g. Lilly and Olhede [2009b] and references therein for details. The wavelet transform

of a real-valued signal vector x(t) with respect to the wavelet ψ(t) is defined as

wx,ψ(t, s) ≡
∫ ∞

−∞

1

s
ψ∗

(
τ − t

s

)
x(τ) dτ

and can be seen, on account of the 1/s normalization, as a set of bandpass operations

indexed by the “scale” s which controls the dilation or contraction of the wavelet in time.

The frequency-domain wavelet Ψ(ω) obtains a maximum magnitude, set to Ψ(ω) = 2, at

some frequency ωψ. This frequency is used to convert scale into a period via 2πs/ωψ.
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The particular choice of analyzing wavelet ψ(t) is important in order to minimize errors

in the subsequent analysis [Lilly and Olhede, 2009b, 2011]. We use the “Airy wavelet”

of Lilly and Olhede [2009b], which can be seen as a superior alternative to the popular

but problematic Morlet wavelet, as discussed therein. The Airy wavelet is controlled by a

parameter Pψ, with Pψ/π giving the number of oscillations spanning the central window

of the wavelet. We choose Pψ/π =
√
6/π ≈ 0.78 in order to obtain a high degree of time

concentration at the expense of frequency resolution.

Multivariate wavelet ridge analysis estimates modulated oscillations in a multivariate,

or vector-valued, time series by first identifying maxima of the transform magnitude. A

brief introduction to this method may be found in Lilly and Olhede [2009a], with further

details and bias estimates provided by Lilly and Olhede [2011]. A ridge point of wx,ψ(t, s)

is defined to be a point on the (t, s) or “time/scale” plane satisfying

∂

∂s
‖wx,ψ(t, s)‖ = 0,

∂2

∂s2
‖wx,ψ(t, s)‖ < 0

and thus ridge points are locations where the norm of the wavelet transform vector achieves

a local maximum with respect to variations in scale. Adjacent ridge points are then

connected to each other to yield a single-valued, continuous scale curve as a function of

time called a ridge ŝ(t).

A number, say M , different ridges ŝ{m}(t) may be present in the same time series, and

may overlap in time. The real part of the wavelet transform along the mth ridge may

be taken as an estimate of the mth oscillatory signal x̃{m}(t) in the composite model (5).

That is

x̂{m}
ψ (t) ≡ '

{
wx,ψ

(
t, ŝ{m}(t)

)}
= x̃{m}(t) +∆x̃{m}

ψ (t)
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where the last term on the right-hand side is an error term. This may be understood as

resulting from the fact that the real part of the wavelet transform at scale s = ωψ/ω is a

bandpass at frequency ω; thus the wavelet ridge estimate combines different pass bands at

different times, as is appropriate for the time-varying nature of the signal. The error term

depends upon several factors: (i) the local ratio of the oscillatory signal strength to the

background variability strength, (ii) the magnitude of changes in oscillation properties

over the wavelet timescale, see the treatment in Lilly and Olhede [2011], and (iii) the

distance between contemporaneous oscillatory signals in frequency compared with the

wavelet frequency profile. A detailed treatment of errors is outside the scope of this

paper; instead, we will point to Fig. 2b in the text and the example below as subjective

evidence that oscillatory signals have been recovered satisfactorily.

It remains to form estimates of the ellipse parameters in the modulated elliptical signal

model (3) associated with each of the M ridges. Observe that, as there are two param-

eters on the left-hand side of (3) but four parameters on the right-hand side, the ellipse

parameters are underdetermined for a given oscillatory signal x̃(t). Since the analytic

wavelet transform wx,ψ(t, s) is a complex-valued 2-vector, it consists of four quantities at

each time. It has been shown by Lilly and Gascard [2006] and Lilly and Olhede [2010]

that the complex-valued wavelet transform evaluated along the ridge may be written as

wx,ψ

(
t, ŝ{m}(t)

)
= eiφ̂

{m}(t)

[
cos θ̂{m}(t) − sin θ̂{m}(t)

sin θ̂{m}(t) cos θ̂{m}(t)

] [
â{m}(t)

−îb{m}(t)

]

with the four quantities on the right-hand side being the sought-after estimates of the

four ellipse parameters at each moment for each ridge. The “hats” mark estimated ellipse

parameters that are defined implicitly through this equation.
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In practical implementation of the wavelet ridge analysis, two numerical thresholds

must be introduced. Firstly a cutoff on the amplitude of ridge points is applied in order

to reject very weak oscillations, which we choose here as position oscillations of less than

400 meters (1/100 of the jet half-width Y ) in magnitude. Secondly we define the ridge

duration

D{m} ≡ 1

2π

∫

T {m}
arg

{
wx,ψ

(
t, ŝ{m}(t)

)}
dt

where “arg” denotes the complex phase, and the integral is taken over the time interval

T {m} of the mth ridge. The ridge duration gives the number of complete oscillations

executed by the estimated signal; we reject all ridges that execute fewer than D{m} =

2Pψ/π ≈ 1.6 complete cycles, as we find ridges that are too short compared with the

wavelet duration are generally spurious.

An example of wavelet ridge analysis is presented in Figure S1 for one of the trajectories

from the numerical simulation. The position trajectory x(t) shown in Figure S1a is trans-

formed using the parameter settings discussed above. 104 different scale levels are used

which vary logarithmically from a minimum period 2πs/ωψ of 0.6 days to a maximum

of 103 days. The norm of the wavelet transform vector is shown in Figure S1b which,

like position record itself, has units of kilometers. In the wavelet transform we see low-

frequency variability with periods of ∼10 days, characteristic of geostrophic turbulence,

and higher-frequency variability with periods of ∼1 day reflecting particle motion around

vortex cores. The large spectral gap between them supports our choice of a time-localized

wavelet.
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M = 4 ridges are detected and are marked in the figure as curves indicating maxima of

the wavelet transform with respect to scale. The real part of the wavelet transform along

the mth ridge estimates the mth oscillatory signal component in the composite model (5),

which the analysis is able to isolate from the surrounding variability. These four estimated

signals are then plotted in Figure S1a along with the residuals. It is observed that the

oscillatory features in the original trajectory are removed extremely well by the analysis

method.

In the central part of the record, two ridges are simultaneously present, with the lower-

frequency curve representing an interaction with a distant vortex. A very weak amplitude

ridge, just greater than our cutoff amplitude, is detected near the end of the time series;

this is almost certainly spurious and illustrates the reason why we impose an amplitude

cutoff; weak “false positives” such as this signal do not impact our analysis because

their amplitude is so small, and because they appear to occur rarely. Note that the

low-frequency background, while slowly meandering in nature, does not generate ridges

because it does not typically result in the appearance of multiple orbits through the same

oscillatory structure, and is therefore not characterized as a modulated oscillation by this

analysis.

There are two transitions in this time series: one around 80 days, when the main ridge

lowers its frequency and a second contemporaneous ridge appears, and a second transition

around 125 days, when these two ridges disappear. It can be seen from watching the

animation, also included in the auxilary materials, that these two transitions correspond

to two vortex mergers. In that animation, ellipses associated with this trajectory are drawn
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in black, and the position of this drifter is indicated with a magenta dot. During the first

merger, the vortex grows in size and its frequency decreases, but there is a remaining

distant vortex which causes lower-frequency oscillatory motion that is manifested as the

lower of the two ridges. During the second merger, the particle is ejected in a filament

and consequently the oscillatory motions come to an end. This indicates that transitions

in the ridges can have physical meaning and can capture vortex evolution.
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Figure S1. An illustration of wavelet ridge analysis. In (a), the east–west and north–south

displacement signals associated with a Lagrangian “particle” in the model simulation are shown

with the blue and red heavy lines, respectively. Thin blue and red lines show aggregate east–

west and north–south oscillatory displacement signals obtained by summing over all estimated

modulated oscillations x̂{m}
ψ (t) at each time. The green curves are the east–west and north–south

residuals x(t) −
∑M

m=1 x̂
{m}
ψ (t). The wavelet transform norm ‖wx,ψ(t, s)‖ is shown in (b), with

scale converted into period on the y-axis. Four ridge curves are identified and drawn. The real

part of the wavelet transform evaluated along these four curves give the estimated oscillations

used in panel (a). Vertical lines in both panels mark the approximate times of vortex merger

events as seen in the animation.
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