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ABSTRACT

This paper considers the propagation of waves on the edge of a stratospheric polar vortex, represented
by a three-dimensional patch of uniform potential vorticity in a compressible quasigeostrophic system.
Waves are initialized by perturbing the vortex from axisymmetry in the center of the vortex, and their
subsequent upward and downward propagation is measured in terms of a nonlinear, pseudomomentum-
based wave activity. Under conditions typical of the winter stratosphere, the dominant direction of wave
propagation is downward, and wave activity accumulates in the lower vortex levels. The reason for the
preferred downward propagation arises from a recent result of Scott and Dritschel, which showed that the
three-dimensional Green’s function in the compressible system contains an anisotropy that causes a general
differential rotation in a finite volume vortex. The sense of the differential rotation is to stabilize the upper
vortex and destabilize the lower vortex. This mechanism is particularly interesting in view of recent interest
in the downward influence of the stratosphere on the troposphere and also provides a possible conservative,
balanced explanation of the formation of the robust dome plus annulus potential vorticity structure ob-
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served in the upper stratosphere.

1. Introduction

In a recent study, Scott and Dritschel (2005, hereafter
SD) showed that the Green’s function of the compress-
ible quasigeostrophic system has an anisotropic decay,
with a slower, algebraic decay vertically upward com-
pared with a faster, exponential decay in all other di-
rections. Here, compressible quasigeostrophic system
refers to the atmospheric situation in which the back-
ground density is exponentially decreasing with height,
and should be contrasted with the Boussinesq system,
with constant background density, whose Green’s func-
tion has an isotropic 1/r decay (in suitably scaled coor-
dinates) in all directions. An important consequence of
the anisotropic decay in the compressible system is that
finite volume vortices exhibit a differential rotation in
which the upper vortex rotates faster than the lower
vortex. They went on to show that for general unstable,
ellipsoidal vortices, the differential rotation leads to a
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stabilization of the upper vortex and a destabilization of
the lower vortex, with the result that wave activity, or,
equivalently, horizontal disturbances to the shape of
the vortex boundary, propagates almost entirely down-
ward. For the ellipsoidal vortices considered in that
study, the downward propagation led to the violent de-
struction of the lower vortex layers, an example of
which is shown in Fig. 1.

This paper considers the extent to which the results
of SD are applicable to the particular situation of
Rossby wave propagation on the edge of the winter
stratospheric polar vortex. The subject of wave propa-
gation and wave breaking is of fundamental importance
to many processes in the middle atmosphere, determin-
ing both the local mixing of chemical species and the
large-scale mean meridional circulation, with conse-
quent implications for the thermal and chemical struc-
ture of the atmosphere (e.g., McIntyre 1990; Holton et
al. 1995). Recent interest in the stratospheric influence
on the troposphere (e.g., Baldwin and Dunkerton 2001,
1999; Thompson and Wallace 1998; Thompson et al.
2002) has also raised the possibility that downward
propagating waves may provide an important dynami-
cal link between the two regions (Perlwitz and Harnik
2003). In this paper we show that the mechanism for
preferred downward propagation described in SD is a
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Fic. 1. Stage in the nonlinear evolution of an ellipsoid with
semiaxis (a, b, ¢) of horizontal aspect ratio a/b = 0.5, vertical as-
pect ratio ¢/Vab = 4/3, and vertical extent D = 2¢ = 2H, where
H is the density-scale height, showing downward propagation of
ellipticity and wave breaking in the lower vortex. From Scott and
Dritschel (2005).

generic feature of flows typical of the winter strato-
sphere, and depends simply upon the existence of posi-
tive vertical shear, or differential rotation, within the
vortex. We do so by considering localized wavelike dis-
turbances to a variety of potential vorticity distributions
representative of the winter stratosphere.

An interesting theoretical consequence of the pre-
ferred downward propagation is that the upper vortex
should be stable. In the simulations described below,
this is nearly always found to be the case. Even for
initially barotropic vortices, which are exceptional, a
stable upper vortex is nevertheless established after
strong wave breaking there leads to a rounded, dome-
like potential vorticity distribution, with the vortex de-
bris forming an annular crown. Such a dome-annulus
structure is known to exist in the upper stratosphere,
evidence including observations dating to Dunkerton
and Delisi (1985) as well as a more recent numerical
study of the three-dimensional structure of Rossby
wave breaking by Polvani and Saravanan (2000). Al-
though there are many other physical processes cer-
tainly at play in the upper stratosphere-lower meso-
sphere, such as strong diabatic forcing and gravity wave
drag, the present framework provides a possible expla-
nation of this structure solely in terms of conservative,
balanced dynamics.

The main tool used in the numerical simulations de-
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scribed below is the contour advective semi-Lagrangian
model developed originally by Dritschel and Ambaum
(1997) and extended to cylindrical geometry by Ma-
caskill et al. (2003). This model is ideal for studying
wave motion on a steep-edged polar vortex, such as that
observed in the winter stratosphere (Waugh et al. 1994;
Plumb et al. 1994). In addition to efficiently capturing
the steep potential vorticity gradients of the vortex
edge, in a way that gridpoint or pseudospectral models
cannot approach, the conservative nature of the model
is perfectly suited to the study of wave propagation.
Contour displacements allow the easy computation of a
nonlinear, conserved wave activity that indicates unam-
biguously the sense of wave propagation.

Finally, we note that a similar approach was adopted
recently by M. Ambaum and J. Methven (2004, per-
sonal communication), who considered wave propaga-
tion on a polar vortex in the Boussinesq system. Using
a similar displacement based measure of wave activity,
actually the contour ellipticity, they also demonstrated
downward wave propagation from a central distur-
bance. However, because of the vertical symmetry in-
herent in the Boussinesq system, upward and down-
ward wave propagation were exactly equal. In contrast,
the preference for downward propagation described in
this paper and in SD is a direct consequence of the
anisotropy associated with the density profile of the
compressible atmosphere.

The remainder of the paper is organized as follows.
Section 2 summarizes the main ideas of SD that under-
lie the results presented here. Section 3 contains details
of the numerical method used to solve the evolution
equations, and a description of the physical parameters
and vortex configurations studied in section 4. Section 4
contains the results of a series of numerical calculations
of perturbed vortices, and introduces various diagnos-
tics that describe the details of the wave propagation.
Section 5 presents our conclusions.

2. Potential vorticity inversion in the compressible
case

We first recall some results from SD. The starting
point is the quasigeostrophic equations of a polar f
plane, written in dimensional form as
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where g(x, y, z, ) is the (anomalous) potential vorticity
(PV), ¢ is the geostrophic streamfunction, u = (u, v) is
the horizontal geostrophic velocity, p, is the back-
ground density, V2 is the horizontal Laplacian, x and y
are horizontal coordinates, and z « —H log p is an
appropriate log-pressure vertical coordinate, with ver-
tical scale height H (cf. Pedlosky 1987). Here, f = 2Q is
polar value of the Coriolis parameter, where () = 27
day ! is the planetary rotation rate, and N is a constant
buoyancy frequency. This system is arguably the sim-
plest geophysically relevant model of rotating, stratified
flow.

The assumption of constant f and N allows the ver-
tical coordinate z to be rescaled by f/N, rendering the
system isotropic in the absence of density variations.
When the density is allowed to vary exponentially with
height, with p, = p, exp (—z/H) where p, is a surface
reference density, the situation appropriate to the at-
mosphere, this isotropy is broken. In that case, nondi-
mensionalizing the horizontal and vertical coordinates
by L (a horizontal length scale) and H, respectively,
allows Eq. (1b) to be written as

S
Vy-o-=q, )
where V7 is the usual 3D Laplacian. The effect of the
exponential density dependence appears as the second
term on the left-hand side.

The underlying result of SD was the derivation of an
explicit Green’s function solution to Eq. (2). Specifi-
cally, the solution to Eq. (2) with the ¢ on the right-
hand side replaced by the Dirac delta function 6(x, y, z

— 7') takes the form

1 p/ 1/2 e*(R/2)

G.(R,z;7') = i <;> R (3)

where R = \/x?> + y*> + (z — z')? is a full 3D radial co-
ordinate from a source point located at (0, 0, z'), and
where we have used the shorthand notation for the
density p = e “and p’ = e 7.

Directly above and below the source, that is, along
the vertical line r = \/x> + y2 = 0, G, reduces to

forz > 7’

1 1
Goo(r:()):_“_ﬂ_lz_zrl{pr/p fOI.Z>Zra

4)
which makes the anisotropy introduced by the com-
pressibility term in Eq. (2) explicit: above the source
point z’, the Green’s function decays algebraically like
1/R, similar to the Boussinesq limit, whereas below the
source the decay is exponential, with a decay scale of
one (H in dimensional units). Note that locally, that is,
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for R <1, G, =~ —1/4wR, which is the form taken by the
Boussinesq Green’s function.

With this knowledge of the Green’s function for the
PV inversion operator it is easy to consider the impli-
cations of the anisotropy for a vortex of finite volume.
Because the streamfunction associated with an element
of PV at a particular location decays more slowly above
than below, it follows that the upper levels of a finite
vortex will spin faster than the lower levels. For spheri-
cal vortices in an unbounded domain, SD showed that
this differential rotation was greatest when the total
vortex depth was around 8H.

As noted in SD, the picture is complicated by the
presence of a lower boundary because of the need to
consider the barotropic component otherwise absent in
the unbounded domain, but which becomes dominant
as the boundary becomes closer to the vortex. The lim-
iting case is that of a columnar vortex spanning the
entire domain between an upper and lower boundary,
for which the response is purely barotropic. However,
for vortices separated from the lower boundary by
more than one or two density-scale heights, it turns out
that the barotropic contribution is weak compared to
the differential rotation.

As can be seen from Fig. 1, the effect of the differ-
ential rotation on the nonlinear evolution of an ellip-
soidal vortex is dramatic. In the Boussinesq case, a vor-
tex of sufficiently large mean horizontal aspect ratio is
unstable to vertically symmetric deformations of the
upper and lower vortex. The effect of the instability is
to reduce the aspect ratio to a subcritical value. In the
compressible case, on the other hand, the vertical sym-
metry is broken: a similar vortex now experiences rapid
deformation in the lower levels, while the upper levels
become more circular. This upper stabilization and
lower destabilization can be explained entirely in terms
of the differential rotation acting together with the
strain induced by the ellipticity of the main vortex (see
SD for further details)."

Finally, it is instructive to consider the above results
in the context of recent work by Ambaum and Hoskins
(2002), who showed that a PV anomaly of given hori-
zontal scale has different decay scales above and below
the anomaly. At first sight, the algebraic decay demon-
strated in Eq. (4) may appear in contradiction to their
result. However, the vertical decay scales they obtained
were a consequence of choosing a priori the horizontal
length scale of the response, since this automatically

! We use these terms loosely, since in the compressible case the
ellipsoidal vortex is not an exact equilibrium solution of the gov-
erning equations component and is considerably larger than in the
case considered here.
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determines the corresponding vertical scale through the
vertical structure equation, as described in Waugh and
Dritschel (1999). In the present case, there is no pre-
ferred horizontal scale because all scales are contained
in the delta function response of the Green’s function.
In fact, Eq. (3) can also be obtained by taking the limit
D — o of Waugh and Dritschel’s bounded Green’s
function, that is, an integral over a continuum of verti-
cal modes, each with a different vertical decay scale.

3. Numerical details

To illustrate the effect of the density anisotropy on
wave propagation, Egs. (1) are integrated numerically
starting from various initial conditions comprising an
axisymmetric vortex plus a wave perturbation. The nu-
merical model used is the contour advective semi-
Lagrangian (CASL) model developed originally by
Dritschel and Ambaum (1997) and extended to cylin-
drical geometry by Macaskill et al. (2003). It solves Eqgs.
(1) in a cylindrical domain using a polar coordinate
system (r, 0, z) that rotates about the cylindrical axis r
= 0 at the rate ) = f/2, where f = 41 corresponds to the
polar value of the Coriolis parameter. Lateral boundary
conditions are free slip, and isothermal boundary con-
ditions, that is, ), = 0, are imposed at the horizontal
upper and lower boundaries at z = 0 and z = Z.

Initial conditions are determined by specifying a ba-
sic state PV as a function of radial and vertical coordi-
nates r and z together with an azimuthal wavenumber
perturbation. The general basic state is defined as

q; r<ryz)
q() r> rO(z)’

q(r,z) = { ®)

where ry(z) is the mean horizontal vortex radius at a
given level, and where ¢; and ¢, are interior and exte-
rior PV values. We will consider two basic forms of
ro(z). In the first, which gives rise to a spheroidal vortex
of vertical aspect ratio c/r,,, ro(z) satisfies rg/rZ, + (z —
7)?/c* = 1. Choosing the maximum horizontal radius
7, = 3Ly, where Li = NH/fis the Rossby deformation
radius, ¢ = 4H, and centroid z, = 6H, produces a vortex
whose vertical and horizontal extent corresponds
roughly to that of the stratospheric polar vortex.

The second form of 74(z), and that used in most of the
simulations below, corresponds to a columnar vortex,
truncated above and below specified levels, z, and z,,
respectively. Specifically,

T 2p<2<2Z
rolz) = {0 otherwise

(6)
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Again, choosing the horizontal radius r,, = 3Lg with
Z, = 2H and z, = 10H corresponds roughly to the di-
mensions of the stratospheric polar vortex. The special
case z;, = 0, z, = Z; corresponds to a barotropic vortex
such as that considered by Dritschel and Saravanan
(1994, hereafter DS94).

Having defined the basic state vortex, an azimuthal
perturbation is added by deforming the vortex bound-
ary with a disturbance of azimuthal wavenumber m = 1,

2,3 .... In polar coordinates, the vortex boundary is
displaced from r = ry(z) to
10, z) = a(z)[ry(z) + n(z) cosmo], ™)

where the disturbance amplitude 7m(z) has a Gaussian
form, given by

n2) =m0 ®)

where m,,,, is the maximum disturbance amplitude and
where the height of the disturbance z,, = 6H is chosen
to be at the midlevel of the domain. In Eq. (7) the
normalization factor a(z) = r3/(r§ + Yom(z)?) is chosen
to ensure that the areas enclosed within each horizontal
cross section of the vortex are equal, that is, so that the
disturbance is area preserving.

The equations are discretized using 120 layers in the
vertical between z = 0 and z = Z; = 12H, where the
vertical scale height, H = 6146 m is representative of
the stratosphere. Notionally, the vertical domain ex-
tends from the ground to near the top of the meso-
sphere. In the horizontal, the streamfunction and ve-
locity fields are calculated on a stretched grid of 128
radial and 264 azimuthal points, although the PV itself
is first interpolated onto a grid 4 times finer for more
accurate inversion. The stretched grid concentrates ra-
dial grid points near the pole, distributing them uni-
formly in r'"? for improved resolution in the region of
interest (providing about 42 radial grid points between
the origin and a vortex edge at r,, = 3Ly). The lateral
boundary is located at a distance of 30L, or 10 vortex
radii, from the pole, far away to have practically no
effect on the evolution. The solutions calculated at this
resolution and in this domain size are numerically con-
verged, in the sense that increasing the resolution or
domain size further has no visible effect on any of the
results.

4. Results

In general, a localized perturbation of the form Eq.
(7) will propagate away from its initial location as a
vertically propagating Rossby wave. In the Boussinesq
system, in which the background density is constant
with height, there is no preferred direction and waves
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F1G. 2. Wave activity as a function of height and time on a spheroidal vortex (case ), of

vertical extent D = 2¢ = 8H and vertical aspect ratio c/r,

= 4/3, with a wavenumber-2

m

perturbation of amplitude m,,,, = 0.2r,, in the central levels.

will propagate equally upward and downward. The
background density variation present in the compress-
ible system breaks that symmetry.

As was shown in SD (and Fig. 1), for the case of
perfect ellipsoidal vortices, the effect of the compress-
ibility is to induce a differential rotation that stabilizes
the upper vortex and destabilizes the lower vortex. The
ellipsoids in that study can be regarded as spheroidal
vortices plus an approximate wavenumber-2 perturba-
tion throughout the whole vortex depth. Although that
study showed a clear accumulation of wave activity in
the lower vortex, it is difficult to consider cleanly the
precise details of wave propagation, because modal dis-
turbances on the scale of the ellipsoids are excited and
propagate in all directions. In the present paper, the
localization of the initial disturbance [Eq. (8)] removes
this drawback and allows a cleaner examination of the
precise details of the wave propagation.

a. Spheroidal vortex

As a first point of departure from SD, we consider
the case of a spheroidal vortex, of vertical aspect ratio
clr,, = 4/3, half-height ¢ = 4H, maximum horizontal
radius r,, = 3Ly centered at z, = 6H; this case is la-
beled S below. Interior and exterior PV values are cho-
sen to be g, = 1.3 and ¢q,, = 0.9, following Dritschel and
Saravanan (1994), although this will be modified in
many of the cases below. The initial azimuthal pertur-
bation has an m = 2 wavenumber and an amplitude of
Nmax = 0.27,,,.

As a principle diagnostic we will consider the wave
activity A, defined as the departure from circularity of
a contour on a given level by

A(z, 1) = py(2)g 51; [Y(0,z,0) — Y(2)’do,  (9)

I'(z)

where the integral is taken around a closed contour I at
height z, 6 is an azimuthal coordinate, Y = Y42 (so that
dY d# is the differential area), Y, = 4rZ, and where r,
is the radius of the undisturbed circular contour enclos-
ing the same area as I'. As defined, A is a nonlinear
pseudomomentum based wave activity, second order in
disturbance amplitude, which satisfies an exact conser-
vation relation [see Dritschel (1988) and Dritschel and
Saravanan (1994) for more details].

Figure 2 shows the wave activity as a function of
height within the vortex (there can be no wave activity
above or below the vertical extent of the vortex) and
time in days for case . The initial wave disturbance can
be seen localized at z = 6H at time ¢ = 0. As time
increases, there is a clear downward preference to the
wave propagation. Although there is also a small up-
ward contribution, this is overwhelmingly dominated
by the downward propagation. The downward propa-
gation continues all the way down the vortex slowing
slightly as it approaches the lowermost levels, with the
wave activity increasing as it is confined into a smaller
vertical region. Note that the vertical integral of A is
conserved in time in the absence of dissipation, which at
these early times is negligible. At later times, long after
the initial downward propagation of the disturbance,
weaker events are identifiable when wave activity is
refocused into a particular region (presumably from
lower levels, although this is difficult to identify pre-
cisely). Again, the downward propagation of these sub-
sequent disturbances is clear.
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Fi1G. 3. The EP fluxes and convergence for the case shown in Fig. 2 (case ) at times ¢ = 1 day, t = 4 days, and ¢ = 7 days. Graphical
conventions follow Dunkerton et al. (1981) with appropriate modifications for cylindrical geometry. Note that the true EP fluxes are
presented, with no density rescaling, as these are the relevant measure of wave propagation.

Another, closely related, measure of wave propaga-
tion is the Eliassen—Palm (EP) flux described in An-
drews and Mclntyre (1978). For the quasigeostrophic
system, this takes the form given in Andrews et al.
[1987, Eq. (3.5.6)]. Note that the diagnostic used here is
the true EP flux, a true measure of the flux of wave
activity A, rather than the frequently shown EP flux
normalized by the density, which emphasizes wave mo-
tions in the upper atmosphere but is not a meaningful,
conservative measure of wave activity.

Figure 3 shows snapshots of the EP flux and its con-
vergence at t = 1, ¢t = 4, and t = 7 days in the height-
radial plane. At t = 1 day, wave activity can be seen to
radiate upward and downward away from the central
perturbed region near z, = 6H. Already at this time it
is clear that the downward propagation is considerably
stronger than the upward propagation. As time pro-
gresses, the downward propagating region continues
steadily downward. On the other hand, the initial weak
burst of upward propagation soon reverses and can be
seen to be propagating downward again by t = 4 and ¢
= 7 days. It is visible in Fig. 2 as the weak downward
tilting region of wave activity that begins in the middle
of the domain around ¢ = 6 days. This reversal is con-
sistent with properties of wave propagation on a slowly
varying (in the vertical) background state derived using
Wentzel-Kramers-Brillouin (WKB) techniques. In
particular, a variant of the quasigeostrophic refractive
index (Harnik and Lindzen 2001) predicts that verti-
cally propagating waves will be reflected downward by

negative shear in the upper stratosphere, as they are
found to do here.

Two final points are worth observing. First, because
waves are confined to the vortex edge, that is, where
there is a nonzero gradient of PV, the EP flux and
convergence are similarly confined. Indeed the vortex
edge can be clearly made out in Fig. 3. Second, because
the initial perturbation and hence wave amplitudes are
fairly weak in this case, the flow is essentially dissipa-
tionless, with no wave breaking or filamentation of the
vortex edge. Therefore, according to the nonaccelera-
tion theorem (Charney and Drazin 1961; Andrews and
Mclntyre 1978), all the flux convergence seen in Fig. 3
can be attributed purely to wave transience: as the wave
packet enters a region the convergence is positive and
as it leaves again the convergence is negative. At later
times, filamentation occurs and dissipation becomes
more important. The trapping of wave activity in lower
levels may be associated with critical layer effects in this
region. Although the precise location of such a layer is
difficult to establish because of the complicated space
and time dependence of the disturbance phase speed, a
rough estimate indicates that a critical layer may exist
near the lowermost vortex levels.

b. Columnar vortex

The spheroidal vortex considered above could be re-
garded as a somewhat peculiar idealization of the
stratospheric polar vortex because its surface closes
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smoothly at each end. For example, it is conceivable
that the curvature of the vortex shape might give a
preference for downward propagation simply through a
focusing of wave activity, perhaps enhanced somehow
by the background density variation. To address this
issue, the above experiment was repeated using a co-
lumnar vortex profile, similar to that used in previous
studies of wave breaking on a simple vortex edge (e.g.,
Dritschel and Saravanan 1994; Polvani and Saravanan
2000; Scott et al. 2004).

The simplest comparison is for a columnar vortex of
the same maximum vertical and horizontal extent as S,
that is, ¢ = 4 and r,, = 3L, using Eq. (6) to define the
vortex edge and keeping the same values of ¢; = 1.3 and
q, = 0.9. For these values of ¢; and ¢,, however, it turns
out that the zonal mean zonal velocity field associated
with the vortex is unrealistically weak, with a jet maxi-
mum around only 30 ms~'. The reason why identical
values of ¢; and g, give rise to a much weaker vortex
here than in DS94 (where the jet maximum was close to
60 m s~ ') is that here the vortex is truncated at z = 2H
and does not extend all the way to the ground. As was
shown in SD, the effect of a lower boundary close to a
PV source is the introduction of a large barotropic com-
ponent, and in the case of DS94, this barotropic com-
ponent is considerably larger than in the case consid-
ered here.

It turns out, therefore, that to achieve a realistically
strong jet maximum in a vortex of the above vertical
extent, it is necessary to increase the values of ¢; and q,,.
Note, however, that because the evolution is insensitive
to an arbitrary background rotation, the effect of these
parameters is only felt through the PV jump Ag = ¢q; —
q,- Furthermore, as can be seen from Egs. (1), the only
effect of changing Aq is a change in the time scale of the
system. Thus, increasing Ag increases the jet maximum
and decreases the time scale of the nonlinear evolution,
so the vortex evolves on a shorter time scale but oth-
erwise identically as before.

Without loss of generality, therefore, we consider the
columnar case with ¢; = 1.5 and ¢, = 0.95, labeled C
below. The zonal mean zonal velocity u for the sphe-
roidal case S and for the columnar case Cis shown in
Figs. 4a,b. At first sight, it appears that the shape of Cis
more representative of the winter stratosphere than
that of § with a stronger jet maximum of around 60
m s~ ! and a zero wind line at more realistic lower lati-
tudes. It should be remembered, however, that these
features could also have been achieved for §by suitable
choices of g; and ¢,,. A fairer comparison would there-
fore be obtained by visualizing the (bold) zero wind line
in Fig. 4a shifted three contours to the right.

Figure 5 shows the evolution of the wave activity for
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case C. Again the dominance of the downward propa-
gation is immediately clear, and indicates that the phe-
nomenon is not simply due to the special geometry of
the spheroidal vortex. As described above, the evolu-
tion for the same case but with ¢; = 1.3 and ¢, = 0.9 is
identical, except that the downward propagation occurs
over a slightly longer time scale.

Figure 6 shows the EP fluxes for case C at times ¢ =
1, t = 4, and ¢+ = 7 days. Again, at time ¢ = 1 the
downward propagation from the initial disturbance is
dominant. As for case §above, the initial upward burst
is seen to partially reverse in the upper vortex and be-
gin propagating downward by ¢t = 4, contributing to the
appearance of the secondary downward propagation
event seen in Fig. 5 around ¢ = 4. Again, the reversal is
consistent with wave reflection in the upper vortex.

c. Dependence on disturbance amplitudes

The above results were obtained with a disturbance
amplitude of n = 0.2r,,, which is a relativity small dis-
turbance. In fact, simulations with smaller amplitude
(not shown) produced very similar results, with only a
slight flattening of the slope of downward propagation,
indicating that the above wave propagation is in a
nearly linear regime.

An interesting question is what is the nature of the
response to much larger disturbances, when nonlinear-
ity can be expected to play an important role. To test
this, case C was repeated using a disturbance amplitude
of m = r,,. For this value, the initial disturbance on the
central level is such that the middle vortex contour
pinches in two, forming a figure-eight horizontal cross
section. Such a symmetric pinching of the vortex is simi-
lar to that often observed in the early stages of wave-2
dominated major stratospheric warming events (e.g.,
Mclntyre and Palmer 1983), and similar to that ob-
served in the recent Southern Hemisphere major warm-
ing event of 2002 [e.g., Newman and Nash (2005), and
the special issue of the Journal of Atmospheric Sciences
(2005, vol. 62, no. 3) on the 2002 Southern Hemisphere
warming and ozone split].

Because of the magnitude of this disturbance, the
nonlinear evolution is dominated by the intense distor-
tion and filamentation of the central vortex, with much
vortex material thrown off the main column. As can be
seen from Fig. 7, these vortex remnants contain a large
fraction of the initial wave activity, which persists at
midlevels, gradually decreasing as the debris is eroded
by the contour surgery. In addition to this midlevel
wave activity, however, there is again a clear compo-
nent of downward propagation and an accumulation of
wave activity in the lowermost levels of the vortex.
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FIG. 4. Initial zonal mean zonal velocity, (¢ = 0), corresponding
to different PV distributions: (a) case .5, a spheroid with a uniform
background rotation (corresponding to interior and exterior PV
values of ¢; = 1.3 and ¢, = 0.9); (b) case S, a column of vertical
extent D = 8H with ¢; = 1.5 and ¢, = 0.95; (c) case BT, a column
of vertical extent D = 12H with g, = 1.3 and ¢, = 0.9. Contour
interval is 10 m s™!; positive, negative, and zero values are con-
toured using solid, dotted, and bold lines, respectively.
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d. Importance of vertical shear

As discussed in SD, it is the existence of vertical
shear, or differential rotation, that is responsible for the
stabilization of the upper vortex and destabilization of
the lower vortex, and which gives rise to the preference
for downward propagation shown above. As a further
illustration of the importance of vertical shear, we con-
sider next the evolution of a disturbance on a purely
barotropic vortex. For this, we choose ¢; = 1.3 and g, =
0.9 following DS94, and set z;,, = 0 and z, = 12, so that
the vortex spans the entire vertical domain. The zonal
mean velocity is shown in Fig. 4c for easy comparison
with case C. Note that this barotropic velocity profile is
identical to that of DS94. We label this case as B7 in
what follows.

Figure 8 shows the evolution of the wave activity for
BT. Now, the initial disturbance gives rise to equally
strong upward and downward propagating waves, with
the initial wave activity remaining approximately sym-
metric about z = 6H at early times. In particular, there
is no trace of preferential downward propagation. The
symmetry is broken at later times as nonlinearities, par-
ticularly in the upper vortex, lead to filamentation and
dissipation of the wave activity.

It is worth noting that the purely barotropic structure
of the vortex BT arises because the PV distribution
spans the entire vertical domain. However, a largely
barotropic response will be found for any distribution
concentrated near the lower boundary, a consequence
of the bounded Green’s function described in Waugh
and Dritschel (1999) and SD. In actual atmospheric
flows, however, the PV in the troposphere is in general
weaker than that in the stratosphere (under the appro-
priate vertical scaling) and, as a consequence, the ver-
tical structure of the zonal velocity is closer to that of
case C than that of B7 (see Figs. 4b,c). In general, one
observes significant positive vertical shear in the upper
troposphere and lower to middle stratosphere, and so
one should expect the conditions for preferential down-
ward propagation to be satisfied. For this reason, we
should also be careful when interpreting the results of
idealized studies of wave propagation on barotropic
vortices.

The upward propagation on the vortex B7 has an
interesting impact on the upper vortex PV structure.
The strong filamentation of the upper vortex erodes the
initially columnar form to produce a smoother dome-
like shape at later times, surrounded by an annulus of
filamentary PV debris. The evolution of the vortex it-
self is shown in Fig. 9 at times ¢ = 0, 5, 10, 15, 20, and
40 days. The initial perturbation is visible at time ¢ = 0
and is seen to propagate upward and eventually leads to
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FI1G. 5. Wave activity as a function of height and time for the columnar case C with a
perturbation of amplitude 7,,,, = 0.2r,, in the central levels.

strong nonlinear distortion of the upper vortex. Note
that, although the wave activity is propagating sym-
metrically upward and downward (Fig. 8), contour dis-
placements in the upper vortex are much larger than
those in the lower vortex on account of the smaller
mass of the former. By ¢ = 20 the dome shape and
surrounding annulus is clearly visible.

Because the cross-sectional area of the upper vortex
at later times decreases with height, there arises a posi-
tive vertical shear at a given location within the vortex,
with the upper vortex rotating faster than that at lower
levels. In other words, a stabilizing differential rotation
is established in the upper vortex, as can be seen from

Fig. 10, which shows the angular velocity at = 0 and
t = 40. Because of this differential rotation, the dome-
like shape is robust (cf. with the spheroidal vortex) and
it again produces a preference for downward wave
propagation. The upper vortex has thus moved from a
state in which upward wave propagation and vortex
distortion was easy, to a more stable one in which it is
inhibited.

e. Other wavenumber disturbances

The mechanism described in SD, whereby the faster
spinning upper vortex is stabilized and the slower spin-

F1G. 6. As Fig. 3 but for the columnar case C.
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F1G. 7. Wave activity as a function of height and time for case C with a wavenumber-2
perturbation of amplitude 1, = 7,

ning lower vortex is destabilized, relied on the horizon-
tal elliptical form of the disturbance. It was the orien-
tation of the upper and lower elliptical cross sections to
the straining flow induced by the main vortex that de-
termined whether these upper and lower contours
would be squashed back to circularity or to greater ec-
centricity. One might well ask, therefore, whether the
above preference for downward propagation relies also
on the fact the initial central disturbance has a wave-2

form, this being, at least for small amplitudes, largely
elliptical.

To answer this question, case C above was repeated
with initial disturbances of different azimuthal wave-
numbers, as determined by the parameter m in Eq. (7).
Figure 11 shows the evolution of the wave activity on
vortices identical to C but with initial disturbances of
wavenumber m = 1 (upper panel) and m = 3 (lower
panel). As is evident, in each case most of the initial
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F1G. 8. Wave activity as a function of height and time for case 87 with a wavenumber-2
perturbation of amplitude 7,,,, = 0.2r,,.
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F1G. 9. Vortex structure for case B7 at times (a) ¢ = 0 days, (b) t = 5 days, (c) t = 10 days, (d) t = 15 days,
(e) t = 20 days, and (f) t = 40 days.

wave activity again propagates downward, accumulat-
ing in the lower levels. A closer inspection reveals some
differences. For example, the initial asymmetry is stron-
ger for higher m (see also Fig. 5 for the case m = 2), the
ratio of downward to upward propagating wave activity
begin slightly less than double for m = 1, but well over
triple for m = 3. However, as time progresses, it can be
seen that some of the initially upward propagating wave
activity in the case m = 1 is reflected downward again
around ¢ = 8. The same happens with m = 3 but to a
lesser extent and earlier. Similarly, there is more evi-
dence of repeated downward propagation events at
much later times for m = 1, presumably because in that
case there is a larger reservoir of wave activity distrib-
uted throughout the upper vortex as a result of the
larger initial upward pulse. The key point to note, how-
ever, is that, despite the nonellipticity of the initial dis-
turbances, there is still a strong preference for the
downward propagation of these azimuthal wavenum-
bers. This can perhaps be best understood by a com-
parison with the phase properties of vertically propa-
gating waves. As before, the vertical shear causes the
disturbance at upper levels to be shifted eastward rela-
tive to the disturbance at lower levels. This shift is noth-
ing but an eastward phase tilt with height and is there-
fore associated with a downward group velocity of the
disturbance.

5. Discussion

We have seen that a wavelike disturbance placed in
the central levels of an ellipsoidal or columnar vortex
propagates predominantly downward away from the
initial disturbance region, roughly twice as much wave
activity going downward as upward. The predominance
is less for lower wavenumber disturbances than for
higher, but is still significant even for wavenumber 1.
The effect is clearly visible both in the wave activity
based on contour displacements, and in the traditional
EP fluxes calculated from the full velocity and stream-
function fields. Although we have considered very
simple vortex configurations, our results appear robust.
One avenue for future work, however, would be to con-
sider wave propagation on more realistic vortex distri-
butions.

The preference for downward propagation arises
from the presence of vertical shear, or differential ro-
tation, within the vortex, which is itself a consequence
of the anisotropy introduced into the Green’s function
by the exponential profile of the background density.
Because a disturbance in the upper vortex is rotating
faster than that on the central vortex below, its phase is
advanced relative to the induced velocity anomaly of
the central disturbance below. This phase advance is
such that the velocity anomaly reduces the upper dis-



SEPTEMBER 2005

12 L—
i i
z
N
P R
T L]
L
T T
3

z [H]

0

0 i 6 9

F1G. 10. Angular velocity for case BT at times (top) ¢ = 0 days
and (bottom) ¢ = 40 days. Positive, negative, and zero values are
contoured using solid, dotted, and bold lines, respectively.

turbance, squashing it back to circularity. Similarly, a
disturbance on the lower vortex is rotating slower than
that on the central above, its phase is retarded, and the
velocity anomaly amplifies the lower disturbance fur-
ther. Thus, the faster rotating upper vortex is stabilized,
whereas the slower rotating lower vortex is destabilized
(see SD for details). An alternative view is that the
vertical shear gives rise to an eastward phase tilt of the
disturbance with height, which is associated with a
downward group velocity.

The fact that vertical shear is necessary to produce
this effect was demonstrated using a purely barotropic,
columnar vortex. In that case, the absence of vertical
shear allowed the waves to propagate equally upward
and downward away from the disturbance. It should be
emphasized, however, that this is a very special case,
whose relevance to the stratosphere is limited. In par-
ticular, when the PV in the lower levels is weak, as it is
in the troposphere, such a strong barotropic response is
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absent and vertical shear occurs naturally. Such is the
case in the atmosphere, where strong vertical shear ex-
ists throughout the troposphere and stratosphere, the
stratospheric jet generally peaking toward the strato-
pause. An interesting area for future research lies in the
possibility of detecting such preferential downward
propagation in observed stratospheric flows. Wave di-
agnostics of the form used above that can be applied
directly to observed fields are currently being devel-
oped by the authors for this purpose.

One consequence of the above is the stabilization
under general circumstances of the upper vortex. In the
case when the initial flow has no vertical shear, as in
case B7above, upward wave propagation causes strong
wave breaking in the upper vortex, with filamention
and the reduction of the cross-sectional area in upper
levels. The result is the formation of a domelike con-
figuration in which the vortex area decreases with
height. This formation has been observed in many
model simulations, including those presented here as
well as in previous studies (e.g., Polvani and Saravanan
2000; Scott et al. 2004), and appears to be a robust
feature. As the domelike formation forms, the vortex
moves toward a more stable distribution, similar to the
spheroid, with positive differential rotation, thereby in-
hibiting further vortex destruction.

In addition to the formation of a domelike configu-
ration, the wave breaking on the upper vortex also
gives rise to an annular ring of high PV consisting of
filamentary debris (Fig. 9). In the calculation here, in
which contour surgery gradually removes finescale
structures, this debris diminishes gradually in the ab-
sence of further wave breaking to replenish it. One
could speculate, however, that in a forced dissipative
system, in which the upper vortex was radiatively
forced toward a stronger configuration, persistent wave
breaking could act as a continuous source for this fila-
mentary debris. In that scenario, a balance would arise
between the removal of the debris by dissipation and
the creation of more debris by wave breaking, and a
persistent annulus structure would emerge. Such a
structure has been known to exist in the mesosphere
since the early observations of Dunkerton and Delisi
(1985). Of course, it is naive to apply concepts of con-
servative, balanced dynamics to a region of the atmo-
sphere where gravity wave drag and strong radiative
effects are capable of producing large accelerations.
These physical effects almost certainly play a major role
in determining the mesospheric PV distribution. None-
theless, it is interesting to observe that the simple
mechanism described here also gives rise naturally to
the same type of distribution.

Lastly, it may have been noticed that no discussion
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FiG. 11. As in Fig. 5, but with a perturbation of amplitude n,,,, = 0.2r,, of (top)
wavenumber 1 and (bottom) wavenumber 3.

has been given to the physical justification for disturb-
ing the vortex in its central levels. One answer to this is
that we are simply interested in whether waves propa-
gate upward or downward, and so a central disturbance
is natural, and no discussion need be given of how it
might arise in reality. However, one might nevertheless
speculate about the origin of actual disturbances in the
interior of the stratosphere. One origin, for example,
could be downward propagation from disturbances
higher up, such as the mesospheric 2-day wave. How-
ever, because the wave activity is proportional to the
vortex displacement times the density, the amount of
wave activity in such an upper atmospheric disturbance
is almost certainly much too small to be of significance
in the lower stratosphere.

The alternative, of course, is wave excitation from
below. In the traditional view, waves are generated in
the troposphere and propagate up on the polar vortex
edge. When wave amplitudes become large, however,
and nonlinear effects become important, the notion of
upward propagation ceases to be appropriate. For ex-

ample, during a major stratospheric warming, the entire
vortex is violently distorted, or even destroyed com-
pletely at certain levels, and further upward propaga-
tion is prevented. One may then think of an in situ
disturbance at a given level, which may subsequently
propagate up or down. This scenario is similar to the
case presented in Fig. 7, in which the vortex in central
levels is split as in a wave-2 major warming. What these
results indicate is that there may be significant down-
ward wave propagation following such events.
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