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ABSTRACT

This paper examines the interaction of oppositely signed vortices in the compressible (non-Boussinesq)
quasigeostrophic system, with a view to understanding vortex interactions in the polar winter stratosphere.
A series of simplifying approximations leads to a two-vortex system whose dynamical properties are de-
termined principally by two parameters: the ratio of the circulation of the vortices and the vertical sepa-
ration of their centroids. For each point in this two-dimensional parameter space a family of equilibrium
solutions exists, further parameterized by the horizontal separation of the vortex centroids, which are stable
for horizontal separations greater than a critical value. The stable equilibria are characterized by vortex
deformations that generally involve stronger deformations of the larger and/or lower of the two vortices.
For smaller horizontal separations, the equilibria are unstable and a strongly nonlinear, time-dependent
interaction takes place, typically involving the shedding of material from the larger vortex while the smaller
vortex remains coherent. Qualitatively, the interactions resemble previous observations of certain strato-
spheric sudden warmings that involved the interaction of a growing anticyclonic circulation with the cyclonic
polar vortex.

1. Introduction

The stratospheric sudden warming is one of the most
dramatic fluid dynamical phenomena in the terrestrial
atmosphere. In the space of a few days the radiatively
driven cyclonic circulation of the winter stratospheric
polar vortex undergoes a rapid deceleration and polar
temperatures increase abruptly. In extreme cases, so-
called major warmings, the deceleration and tempera-
ture increase is such as to reverse the vertical shear and
pole-to-equator temperature gradients throughout
much of the stratosphere: zonal mean westerlies as
strong as 80 m s�1 are replaced with easterlies and tem-
peratures rise by several tens of degrees.

Traditionally, stratospheric sudden warmings are
considered to result from the saturation and breaking
of planetary waves, which propagate upward from a
tropospheric source on the steep potential vorticity gra-
dients around the polar vortex. This paradigm, based

on a decomposition of the flow into wave and zonal
mean components, was demonstrated in the pioneering
mechanistic modeling work of Matsuno (1971) and
Holton (1976) and has proved extremely useful, both in
describing the dynamics of sudden warmings them-
selves and in quantifying the residual circulation re-
sponsible for long-term transport. In this view, major
warmings typically fall into one of two categories, de-
pending on whether the polar vortex is displaced off the
pole (wave 1) or split (wave 2). Particularly dramatic
examples of the latter include the warming of February
1979 (e.g., McIntyre and Palmer 1983) and the warming
of September 2002 (e.g., Newman and Nash 2005), the
only example of a Southern Hemispheric major warm-
ing on record. Recently, Esler and Scott (2005) showed
that resonant excitation of a nonpropagating barotropic
mode may provide the dominant forcing mechanism of
these wave-2 sudden warmings.

Despite the success of the wave–mean flow descrip-
tion, the dynamics of the winter stratosphere often
takes on a more local character. At these times, a de-
scription based on interactions of coherent structures of
potential vorticity (PV) appears more natural than one
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based on wave–mean flow interactions. This synoptic
view was advocated by O’Neill and Pope (1988), who
described the stratospheric evolution in terms of the
interaction of vortices in the presence of topographic
forcing in a numerical simulation of a sudden warming.
A particularly striking example of vortex merger in the
stratosphere was shown in Lahoz et al. (1996, their Fig.
16) during the Southern Hemisphere (SH) spring of
1994, when a traveling anticyclone merged with a quasi-
stationary anticyclone in midlatitudes equatorward of
the polar vortex edge. The interaction of the resulting
anticyclone (also strengthening due to radiative effects)
with the radiatively weakening polar vortex contributed
to the ensuing final warming, when polar air was en-
trained into lower latitudes and the cyclonic circulation
was replaced with anticyclonic circulation in the tran-
sition to summer easterlies.

Observations of the Northern Hemisphere winter
stratospheric polar vortex reveal a persistent anticy-
clonic circulation and associated quasi-stationary ridge
known as the Aleutian high located near 170°W on the
equatorward side of the polar vortex edge (see, e.g.,
Harvey and Hitchman 1996, for a climatology). In the
Southern Hemisphere, anticyclones are typically trav-
eling during mid- and late winter, but may become
quasi stationary in spring prior to the final warming
(Lahoz et al. 1996). Using observations from the Upper
Atmosphere Research Satellite (UARS) and the U.K.
Met Office (UKMO) unified model, O’Neill et al.
(1994) identified the merger of an eastward-traveling
anticyclonic vortex with the Aleutian high prior to the
sudden warming of January 1992. The interaction of the
resulting anticyclonic circulation with the polar vortex
contributed to the sudden warming a few days later.
Various other studies (e.g., O’Neill and Pope 1988;
O’Neill et al. 1994; Rosier and Lawrence 1999) have
linked the evolution of the Aleutian high to the onset of
stratospheric sudden warmings. Even when the polar
vortex does not extensively break down, the interaction
of the anticyclonic Aleutian high and the cyclonic polar
vortex leads to entrainment of polar and midlatitude air
and can contribute significantly to the mixing and trans-
port of chemical species across the polar vortex edge
(Lahoz et al. 1994, 1996).

The dynamics of interacting vortices in the winter
stratosphere closely resembles the behavior of idealized
vortex patches. Numerical studies of the vortex merger
in the two-dimensional Euler equations date back to
Christiansen and Zabusky (1973). More recently,
Dritschel (1995) documented the equilibrium configu-
rations of general two-dimensional vortices, including
the case of oppositely signed vortices, and illustrated
the nonlinear, time-dependent evolution of the un-

stable configurations using high-resolution contour dy-
namics. Of particular interest here is the result that, for
two oppositely signed vortices of unequal sizes, the
larger vortex generally exhibits the largest deforma-
tions, both at equilibrium and during instability. This
result, which has also been observed for the case of
three-dimensional Boussinesq vortices (Reinaud and
Dritschel 2002; J. N. Reinaud and D. G. Dritschel 2004,
unpublished manuscript), suggests the possibility that a
relatively small Aleutian high may have a large effect
on the dynamics of the polar vortex. Two further ob-
servations are in order: first, as vortex disturbances are
large and the dynamics is far from linear, a wave–mean
flow description is not a good representation of the
evolution of vortex interactions; and, second, the time
scales of vortex interactions in the stratosphere are
much shorter than typical radiative time scales.

In this paper, we consider in detail the isolated inter-
action of two oppositely signed vortices in a compress-
ible (i.e., non-Boussinesq) atmosphere. A main cyclonic
vortex represents the polar vortex, while a generally
smaller, anticyclonic vortex represents the Aleutian
high, or the result of previous anticyclonic vortex
merger. We use an adiabatic technique similar to that
used by Dritschel (1995) to sweep out a family of stable
equilibrium solutions, followed by high-resolution nu-
merical integrations to follow the three-dimensional
evolution of unstable configurations. Our results draw
on earlier work (Scott and Dritschel 2005) that used the
Green’s function of the compressible system to show
that a given PV anomaly has a stronger influence on the
circulation above the level of the anomaly than below.

The structure of the paper is as follows. In section 2,
we outline the experimental approach, physical param-
eters, and numerical procedures, and in particular the
adiabatic technique for finding equilibria and construct-
ing the initial conditions. In section 3, we describe prop-
erties of the equilibrium solutions including the orien-
tation and deformation of the vortices at equilibrium
and the dependence on circulation ratio and vertical
offset. In section 4, we show examples of the time-
dependent, nonlinear evolution of unstable equilibria
and describe the results of a parameter sweep. In sec-
tion 5, we consider the influence of the lower boundary.
In section 6, we summarize our results and discuss their
implications for stratospheric sudden warmings.

2. Approach

As a first approximation, we consider the polar vor-
tex and Aleutian high as isolated (uniform) patches of
anomalous cyclonic and anticyclonic potential vorticity,
respectively. Although O’Neill and Pope (1988) identi-
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fied an important role for tropospheric wave forcing in
stratospheric vortex–vortex interactions, we restrict at-
tention here to the unforced system to isolate as com-
pletely as possible the dynamics of the two-vortex sys-
tem. Vortex–vortex interactions in the presence of to-
pographic forcing will be considered in a future study.

The evolution of the system is completely governed
by a relatively small set of parameters, including the
size, shape, strength, and position of the vortices. We
focus on varying two of these, namely, the relative cir-
culation and vertical offset of the two vortices, while
fixing the others to values representative of the winter
stratosphere.

For each set of parameter values, equilibrium solu-
tions are constructed using the adiabatic technique de-
scribed in Dritschel (1995). Two spheroidal vortices,
initially well separated, are pushed slowly together by
an externally imposed, two-dimensional, area-pre-
serving potential flow. The external flow is weak
enough that the two vortices remain in approximate
equilibrium as they become closer together, thus
sweeping out a family of equilibrium solutions as a
function of horizontal separation. The procedure is de-
scribed in detail in section 2d below.

For small enough horizontal separation, the equilib-
ria lose stability and a rapid interaction takes place. The
nonlinear, time-dependent evolution of the vortex in-
teractions is followed using the contour-advective semi-
Lagrangian method developed by Dritschel and Am-
baum (1997). The computational efficiency of this
method allows a complete investigation of the two-
dimensional parameter space described above, without
compromising horizontal resolution.

a. Governing equations

For computational efficiency and for a succinct de-
scription of the large-scale, balanced dynamical motion,
our model is based on the quasigeostrophic equations
in a compressible (non-Boussinesq) atmosphere. This
system is arguably the simplest geophysically relevant
model of rotating, stratified flow. Since time scales for
vortex–vortex interactions are short relative to the ra-
diative time scale, we include no diabatic forcing term.

The governing equations are

Dq

Dt
�

�q

�t
� u · �q � 0, �1a�

�h
2� �

1
�0

�

�z ��0

f2

N2

��

�z� � q, �1b�

�u, �� � ��
��

�y
,
��

�x�, �1c�

where q(x, y, z, t) is the (anomalous) PV, � is the geo-
strophic streamfunction, u � (u, �) is the horizontal
geostrophic velocity, 	2

h is the horizontal Laplacian, x
and y are horizontal coordinates, z � �H log p is an
appropriate log pressure vertical coordinate, with ver-
tical-scale height H, and 
0 � exp(�z/H) is the back-
ground density (cf. Pedlosky 1987). Here, f � 2� is the
polar value of the Coriolis parameter, where � � 2�
day�1 is the planetary rotation rate, and N is a constant
buoyancy frequency.

b. Numerical details

We use the contour advective semi-Lagrangian algo-
rithm developed originally by Dritschel and Ambaum
(1997) and extended to cylindrical geometry by Ma-
caskill et al. (2003). It solves (1) in a cylindrical domain
using a polar coordinate system (r, 
, z) that rotates
about the cylindrical axis r � 0 at the rate � � f/2,
where f � 4� corresponds to the polar value of the
planetary rotation rate. Lateral boundary conditions
are free slip, and isothermal boundary conditions (i.e.,
�z � 0) are imposed at the horizontal upper and lower
boundaries at z � 0 and z � ZT.

For the individual cases presented below, the equa-
tions are discretized using 64 layers in the vertical be-
tween z � 0 and z � Z

T
� 12 H, where the vertical-scale

height H � 6146 m is representative of the stratosphere.
Notionally, the vertical domain extends from the
ground to near the top of the mesosphere. In the hori-
zontal, the streamfunction and velocity fields are calcu-
lated on a stretched grid of 96 radial and 192 azimuthal
points, although the PV itself is first interpolated onto
a grid 4 times finer for more accurate inversion. The
stretched grid concentrates radial grid points near the
pole, distributing them uniformly in r1/2 for improved
resolution in the region of interest (providing about 30
radial grid points between the origin and a notional
vortex edge at r � 3L

R
, where L

R
� NH/f � 902 km is

the Rossby deformation radius). The lateral boundary
is located at a distance of Rout � 30 L

R
from the pole,

far enough away to have practically no effect on the
evolution.

For the parameter sweeps, a resolution of half the
above was used, to permit a sufficiently dense sampling
of the two-dimensional parameter space. The lower-
resolution calculations gave results very similar to the
corresponding high-resolution ones, particularly for the
equilibrium states. During the time-dependent interac-
tions, small differences between the low- and high-
resolution cases developed, but these were restricted to
the details of vortex filamentation; bulk features such
as the wave activity and reduction in total circulation
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were found to be largely insensitive to the resolutions
considered.

c. Vortex parameters

As first approximations to the polar vortex and Aleu-
tian high we consider spheroidal patches of uniform
PV, labeled V1 and V2, respectively (subscripts 1 and 2
will also be used to identify physical quantities associ-
ated with V1 and V2). The two-vortex system can be
described by the horizontal and vertical radii of each
undisturbed vortex, their horizontal and vertical sepa-
rations, and the ratio of the PV anomalies. For defi-
niteness, we fix the vertical–horizontal aspect ratio of
each vortex, � � c/a, to a value of 4H/3LR. This value
is representative of the stratospheric polar vortex. Fur-
ther, we fix the size of V1 to a representative strato-
spheric value, with a total depth of 8 H and horizontal
radius of 3 LR.

The relative strengths of the two vortices are deter-
mined by their volume and PV anomaly. It turns out
that the nature of the interactions depends most signifi-
cantly on the ratio of the product of these quantities,
that is, on the ratio of the vortex circulations, defined
by �i � qiVi, where i � 1, 2, qi is the PV anomaly, and
Vi � 4�cia

2
i /3 is the volume of the undisturbed vortex.

This allows us to fix q1 � �q2 and vary the ratio �2/�1

through the size of V2, which is determined completely
by c2.

With this reduction, the system depends on the cir-
culation ratio �2/�1, the vertical positions z1 and z2, and
the horizontal separation d � [(x2 � x1)

2 � (y2 � y1)
2]1/2,

where (xi, yi, zi) is the position of each vortex centroid
in a Cartesian coordinate system. Of these, �2/�1, z2 �
z1, and z1 are treated as external parameters taking the
values shown in Table 1 (which also summarizes the
choices of fixed parameters). The horizontal separation
is swept out during the equilibrium-finding procedure
described in section 2d.

Only two values of z1 are considered because inter-
actions depend predominantly on the vertical offset z2

� z1. As shown below, the results show only small
quantitative differences between z1 � 6H and z1 �
4.5H. Further, in terms of the stratospheric polar vor-
tex, these two values bracket the range of plausible
separations between the lowermost vortex and the
ground, with separations of 2H � 12 km and 0.5H � 3
km, respectively (since c � 4H). Essentially, for z1 �
6H the main dynamical evolution takes place far
enough above the lower boundary for boundary effects
to be unimportant. The second value of z1 � 4.5 was
chosen as this corresponds to the separation where
lower boundary effects begin to affect the evolution
(see Scott and Dritschel 2005, for further details).

d. Equilibria

The equilibrium-finding procedure described in
Dritschel (1995) and Legras and Dritschel (1993) be-
gins with two vortices already at (stable) equilibrium,
makes a small change to their horizontal separation,
and allows the pair to adjust to a new equilibrium state.
Practically, this is achieved by imposing a weak, area-
preserving, z-independent, external velocity field
throughout the domain, which advects each vortex to-
ward the origin. The vortices become more deformed
as they drift closer together while remaining in quasi
equilibrium.

When the vortices are well separated, an equilibrium
solution is given to a good approximation by two coro-
tating spheroids. We therefore consider two initially
spheroidal vortices whose centroids lie, without loss of
generality, on the line y � 0 in the corotating frame of
reference, at the points (�x0, 0). We use a value of x0 �
Rout/�3 to approximately minimize the combined in-
fluence of the circulation due to the image (in the cy-
lindrical boundary) of the vortex and the circulation
due to the opposite vortex. As the vortices are brought
together, the rotation rate of the reference frame is
adjusted to follow the vortex corotation, thereby ensur-
ing that the vortex centroids remain on the line y � 0 at
all times.

In this frame of reference, a suitable external velocity
field is a simple straining flow of the form

�u, �� � ���x, y�, �2�

whose nondimensional magnitude � � 0.05 has been
chosen by experimentation to be small enough to allow
the vortices to adjust to equilibrium as they approach
each other. One benefit of the form (2) is that the ex-
ternal flow becomes progressively weaker as the vorti-
ces approach each other and become more significantly

TABLE 1. Fixed and varying parameters for the undisturbed po-
lar vortex V1 and Aleutian anticyclone V2 in the two-vortex model:
PV anomaly q; vertical–horizontal aspect ratio �; vertical semiaxis
c (in units of H ); circulation ratio �2/�1; vertical offset
z2 � z1, and polar vortex vertical centroid z1 (both in units of H ).

Fixed V1 V2

q 1 �1
� � c/a 4/3 4/3
c 4 4|�2/�1|1/3

Varying
��2/�1 0.02, 0.04, . . . , 0.98, 1
z2 � z1 �2, �1.9, . . . , 1.9, 2
z1 6, 4.5
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deformed. A family of stable equilibrium solutions are
thus swept out over a range of horizontal separations
until the separation becomes small enough that the sys-
tem loses stability.

e. Time-dependent interaction

We study the time-dependent evolution of the insta-
bility by solving the full equations (1) with initial con-
ditions obtained from the above equilibrium-finding
procedure at small horizontal separation. At present,
we do not have a precise method for determining ex-
actly when the equilibria become unstable. However,
an inspection of a large number of cases suggests that
the vortices are always unstable when their deforma-
tion becomes sufficiently large. It turns out that a suit-
able measure of vortex deformation is given by the sec-
ond and third elliptical moments, M(2)

i and M(3)
i , where

Mi
�2� �

1
Mi

�
Vi

�0�z��x2 � y2 � re
2�z�� dx dy dz, �3a�

Mi
�3� �

1
Mi

�
Vi

�0�x�y3 dx dy dz, �3b�

and where Mi � �Vi

0 dx dy dz is the total mass of the

vortex and re(z) is the mean horizontal radius at each
level. We assume a nondimensional scaling of x and y
such that Rout � 1. Here, M(2)

i measures the horizontal
ellipticity of the vortex and M(3)

i measures the depar-
ture from symmetry in the y axis, which typically takes
the form of a crescent-shaped deformation of the larger
vortex. In all the cases studied, the system is unstable
when the combination

M � max�Mi
�3�, 0.05Mi

�2�� �4�

exceeds a certain threshold, M c. For unequally sized
vortices the deformation involves larger M(3)

i and
smaller M(2)

i . When the vortices are of similar size, how-
ever, the asymmetry in the y axis is small and the de-
formation involves mainly M(2)

i .
We choose the threshold value M c � 0.0001, which

has been empirically determined to ensure that the sys-
tem is well within the margin of instability. For margin-
ally unstable vortices the instability is relatively weak,
with smaller growth rates and weaker interaction than
occurs during the merger of like-signed vortices.

3. Equilibrium solutions

We begin by considering the equilibrium solutions of
two equal volume, vertically aligned, oppositely signed
vortices. Obviously this configuration is not intended to
resemble the winter stratosphere. Rather, it is useful

because it illustrates the type of vortex deformations
that occur in the absence of the asymmetries introduced
by differences in size and vertical position. Such a con-
figuration might conceivably be approached in SH
spring before the onset of the final warming, when ra-
diative effects weaken the polar vortex and strengthen
the Australian high, but the dipole will translate and is
unlikely to remain stable over the pole for long.

As described in section 2d, a family of steady states is
swept out as the originally spheroidal vortices are
slowly brought together. As the vortex separation de-
creases, the vortices deform by flattening in the direc-
tion of their alignment, predominantly on the inner-
most faces (see Fig. 1). For the extreme case on the
right, which is actually within the margin of instability,
the faces are almost touching and the top view re-
sembles the limiting case for two-dimensional vortices
described in Dritschel (1995, his Fig. 6e).

In addition to the flattening, the vortices also develop
a vertical tilt with lower vortex levels closer together
and upper levels farther apart. The tilting appears con-
sistent with the vertical dependence of the induced cir-
culation of each vortex. The exponential variation of
the background density profile introduces an anisot-
ropy in the quasigeostrophic Green’s function, with
slower decay above than below the vortex, which
means that the induced circulation of a uniform vortex
patch is stronger above the vortex than below (see Scott
and Dritschel 2005, e.g., their Fig. 2). Considering the
vortex pair as a stack of two-dimensional dipoles trans-
lating in the positive y direction (i.e., toward the top of
Fig. 1d), the dipole at upper levels will tend to translate
faster than that at lower levels. This will cause the pair
to tilt along the y axis, as observed in the figure. To
reduce the y tilt, the vortices tilt away from each other
(in x) with height, thereby increasing the horizontal
separation and reducing the strength of the circulation
each vortex feels from its pair.

We now consider how the symmetry of the above
equilibria is broken, first, when the vortices are of un-
equal sizes, and second, when they are vertically offset.
Equilibria for unequal vortices with zero vertical offset
are shown in Fig. 2 for circulation ratios of ��2/�1 �
0.8, 0.6, 0.4, and 0.2. The corresponding equal volume
case was shown in Fig. 1d. Note that the equilibria
shown are for M just exceeding M c, and represent more
or less the limit of the equilibrium-finding procedure:
although these equilibria are unstable, the growth rate
of the instability up to these horizontal separations is
small enough that significant departures from equilib-
rium have not yet occurred. As for the equal volume
case, the vortices again become flattened toward each
other and tilted away from each other with height. Per-
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haps counterintuitively, however, it is the larger vortex
that experiences the greatest deformation (see Fig. 2).
Such behavior was identified already by Dritschel
(1995) in the two-dimensional case and has also been
observed in the three-dimensional Boussinesq case
(J. N. Reinaud and D. G. Dritschel 2004, unpublished

manuscript). In addition to flattening, the larger vortex
also develops a characteristic concave shape oriented
toward the smaller vortex.

Figure 3 shows the equilibria for the case of equal
volume but vertically offset vortices, again at the point
where M just exceeds M c. As the vertical offset is in-

FIG. 1. Equilibrium states for the equal volume, vertically aligned vortex pair for different horizontal separations: (a)–(d) a top view
and (e)–(h) side view perspective from an elevation of 30°. The negative (anticyclonic) vortex is drawn using dashed contours. The axis
in (d) indicates the orientation relative to the Cartesian coordinates used in section 2c.

FIG. 2. Equilibrium states for vertically aligned vortex pairs of
unequal volume: (a) circulation ratio ��2/�1 � 0.8, (b) ��2/�1 �
0.6, (c) ��2/�1 � 0.4, and (d) ��2/�1 � 0.2. The top view is shown
large; the inset shows the corresponding side view.

FIG. 3. Equilibrium states for equal volume vortex pairs with
different vertical offsets: (a) z2 � z1 � 0.8, (b) z2 � z1 � 1.6, (c)
z2 � z1 � �0.8, and (d) z2 � z1 � �1.6. The top view is shown
large; the inset shows the corresponding side view.
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creased, the tilt of the vortices, which persists for small
offsets, develops a twist, with the vortices partially
wrapped together for z2 � z1 � �1.6H. We find that
now the lower vortex is always the more deformed of
the pair. As with the tilt, this property can be under-
stood in terms of the slower decay of the Green’s func-
tion above the vortex than below: at a given level, the
circulation induced by the lower vortex is on average
stronger than that induced by the upper vortex. The
lower vortex can therefore be regarded in some sense
as the stronger of the pair and experiences stronger
deformation as in the case of unequal volume vortices.
Note that the sense of the twist here is eastward with
height, in contrast to the occasionally westward tilt with
height of the Aleutian high (Harvey and Hitchman
1996), the latter is most likely a signature of upward
wave propagation.

To quantify the combined effects of unequal volume
and nonzero vertical offset on the vortex deformation
we calculate, separately for each vortex, the third mo-
ment M(3)

i , where i � 1 and 2 for the cyclonic and
anticyclonic vortices, respectively. Figure 4 shows M(3)

1

� M(3)
2 for circulation ratios ��2/�1 between 0.05 and 1

and vertical offsets z2 � z1 between �2H and 2H. As
seen above, along the line z2 � z1 � 0 it is always the
strongest vortex that is deformed the most. Similarly
along the line ��2/�1 � 1 it is always the lower vortex
that is deformed the most. In general, there is a well-
defined crossover point in parameter space where the
effects of vortex strength and vertical offset are in exact
balance and the vortices are equally deformed. Above
and to the left of that line (i.e., for a smaller and higher
anticyclone) the cyclonic vortex experiences the most
deformation.

4. Nonlinear evolution

We next consider the time-dependent evolution of
unstable equilibrium solutions. As described in section
2e, we use the criterion M � M c to select unstable initial
conditions from which to integrate the equations (1).
For all the cases considered, this criterion ensures that
the equilibria are indeed unstable. Although equilibria
are often unstable at smaller values of M (i.e., at larger
horizontal separation) the growth rate for the instabil-
ity only becomes significant (relative to radiative relax-
ation rates in the stratosphere) at larger M .

Figure 5 shows an example of the evolution of the
instability for a circulation ratio ��2/�1 � 0.6 and ver-
tical offset z2 � z1 � 0. The initial condition in Fig. 5a
is the same as the equilibrium solution shown in Fig. 2b.
As the instability develops, the cyclonic (polar) vortex
becomes increasingly deformed, wrapping around the
smaller, anticyclonic vortex. By t � 6 days the polar
vortex has become so elongated that it wraps up into
two distinct vortices, the smaller of these forming a
dipole pair with the anticyclone. In addition to the
shedding of a second vortex, the polar vortex also be-
comes highly tilted, which results in the subsequent
shedding of vortex material at upper levels (not
shown). Remarkably, the anticyclonic vortex remains
coherent and approximately ellipsoidal throughout the
evolution.

a. Parameter sweep

We use two measures to quantify the total deforma-
tion of the polar vortex resulting from the unstable in-
teraction; namely, the time-averaged wave activity and
the reduction in the zonal mean zonal velocity. The
total wave activity A(t) is the vertical integral of

A�z, t� � ��z�q�
��z�

�Y�	, z, t� � Ye�z��2 d	, �5�

which represents the departure of the polar vortex from
a circular cross section (Dritschel and Saravanan 1994).
Here the integral is taken around a closed contour � (or
collection of contours, if the original contour breaks
up) at height z, 
 is an azimuthal coordinate, Y � 1⁄2 r2

(so that dY d
 is the differential area), Ye � 1⁄2 r2
e, and

re is the radius of the undisturbed circular contour en-
closing the same area as �. The total wave activity is
normalized by the total angular impulse of the polar
vortex at t � 0. Note that here we consider the wave
activity of the polar vortex alone, as a measure of its
deformation; the combined wave activity of the polar
vortex plus anticyclone is conserved in the absence of
dissipation.

FIG. 4. Relative vortex deformation measured by the third mo-
ment, M(3)

1 � M(3)
2 , where i � 1 and 2 for the cyclonic and anti-

cyclonic vortices, respectively. Positive values are contoured solid,
negative values are dashed.
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The reduction in zonal mean zonal velocity is defined
as [U(0) � U(�)]/U(0), where U(t) � max(r,z)u(r, z, t) is
the domain maximum of the zonal mean zonal velocity
at time t. The long-time value U(�) is defined as the
time average from t � 10 to t � 40. In calculating u, we
take the zonal mean to be the azimuthal average rela-
tive to the centroid of the polar vortex. While, at first
sight, it is more natural to take the zonal mean relative
to the global potential vorticity centroid, it is clear that
such an approach fails for values of ��2/�1 nearing
unity, when the global centroid is located increasingly
distant from the region of interest. Our choice is moti-
vated by our objective of quantifying the deformation
of the polar vortex. Further, for small �2/�1 the differ-
ence between the polar vortex centroid and the global
centroid is small. We note, however, that our choice
differs from the traditional, geographically relative
zonal mean used in spherical geometry in one impor-
tant respect: on the sphere, the displacement of a vortex
off the pole implies a deceleration of the traditional
zonal mean zonal velocity, even in the absence of other
vortex deformations. In contrast, taking the zonal mean
relative to the vortex centroid implies that all zonal
means are by definition translation invariant.

We calculate these two diagnostics for a series of
simulations covering the two-dimensional parameter

space defined by ��2/�1 and z2 � z1 taking the values
shown in Table 1. Since the PV anomalies of each vor-
tex are fixed, the range of circulation ratios corresponds
to anticyclones of volumes between 1 and 1/20 times the
volume of the polar vortex. The range of values of ver-
tical offset allows for any vertical position of the anti-
cyclone such that it remains entirely within the vertical
domain. Negative offset values correspond to a lower
anticyclone.

Figure 6 shows the results from the case z1 � 6H, for
which the polar vortex is in the center of the domain
with the lowermost vortex level at a distance 2H from
the ground. Both diagnostics show that significant in-
teraction occurs over a highly localized region in pa-
rameter space. This region coincides closely with the
transition region seen in Fig. 4 where both vortices have
approximately equal levels of deformation. Thus, for
��2/�1 � 1, the maximum interaction, or the maximum
effect of the anticyclone on the polar vortex, occurs for
configurations in which the centroid of the anticyclone
is slightly below that of the polar vortex. When the
anticyclone is lower there is greater interaction with the
lower, and denser, levels of the polar vortex, and hence
there is a larger contribution to wave activity. On the
other hand, if the anticyclone is too much lower it ex-
periences stronger deformation than the polar vortex.

FIG. 5. Evolution for ��2/�1 � 0.6, z2 � z1 � 0 at t � 0, 2, 4, 6, 8, and 10 days (from upper left to lower right).
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b. Dependence on vertical offset

We now examine in more detail the dependence of
the vortex evolution on the vertical offset. Figure 7
shows the evolution at t � 0, 4, 8 days for ��2/�1 � 0.6
and values of vertical offset z2 � z1 � 0.4H, �0.4H, and
�0.8H. See also the case z2 � z1 � 0.0 shown in Fig. 5.
The maximum interaction occurs for z2 � z1 � �0.4H,
consistent with Fig. 6a. Although a similar volume of
material is shed from the polar vortex for z2 � z1 � 0,
close inspection reveals that for z2 � z1 � �0.4H ma-
terial is shed from the vortex at lower levels and, be-
cause of density weighting, therefore results in a greater
change in vortex angular momentum and wave activity.
For z2 � z1 � �0.8H, material is shed from the polar
vortex at still lower levels (the lowest contours being
completely removed), although the volume is smaller.
For z2 � z1 � 0.4H (i.e., when the anticyclone is higher
than the polar vortex), only a small volume of material

is shed from the upper vortex levels and the density-
weighted contribution to the angular momentum bud-
get is small.

The distribution of zonal mean zonal velocity relative
to the polar vortex centroid, u, as a function of radial
coordinate (corresponding to latitude) and height, also
illustrates the relative strengths of interaction for dif-
ferent vertical offsets. Figure 8 shows u at (left column)
t � 0 and (right column) t � 10 days for z2 � z1 � 0.4,
0, �0.4, �0.6, �0.8, and �1.2H, respectively. At t � 0
the polar vortex appears as a broad jet with a maximum
between r � 2 LR and r � 3 LR and between z � 7H
and z � 8H, roughly corresponding to between 60° and
70° latitude and between 42- and 48-km height, not
dissimilar to the winter stratospheric polar vortex. De-
pending on the height of the anticyclone, the interac-
tion appears as a sudden deceleration of the jet with
characteristics ranging from weak deceleration con-
fined to the upper vortex (z2 � z1 � �0.4H) to com-
plete reversal of u throughout most of the domain.

In terms of the deceleration of u, the maximum effect
of the anticyclone on the polar vortex is obtained for
z2 � z1 � �0.6H and �0.8H, where the zonal mean
winds are reduced to around zero or reversed in a ma-
jor sudden warming–like interaction. When the anticy-
clone is lower than this it has very little effect on the
circulation of the polar vortex. When the anticyclone is
higher its main effect is the reduction of zonal mean
winds in the upper part of the domain only.

If we consider the appropriate scaling of vortex
anomalies we find that time scales for the interaction
are similar to those of stratospheric sudden warmings.
With the chosen values of PV anomalies (�f ), the
maximum deceleration of the vortex is usually reached
around t � 10 days. However, as can be seen from Fig.
8, these anomalies are somewhat weak, corresponding
to a jet maximum of up to around 35 m s�1, around
half-typical stratospheric values. Doubling the PV
anomalies to give more realistic zonal velocities is
equivalent to halving the time scale: the same decelera-
tion occurs as shown in Fig. 8 but with the contour
interval of 10 m s�1 and over a time interval of 5 instead
of 10 days, consistent with velocity changes and time
scales of observed sudden warmings.

c. Dependence on circulation ratio

We now take a closer look at vortex interactions for
different �2/�1. First, we consider the case of a very
strong anticyclone, with ��2/�1 � 0.8. Although it is
highly unlikely that a coherent anticyclone of this
strength could ever develop in the winter stratosphere,
it is not inconceivable that such a situation might arise
in the Southern Hemisphere stratosphere in spring, im-

FIG. 6. Measures of the reduction in main (cyclonic) vortex
intensity resulting from the interaction. (top) Total final wave
activity of the cyclonic vortex normalized by the initial angular
impulse. (bottom) Reduction in the domain maximum of the
zonal mean zonal velocity [U(0) � U(�)]/U(0). In both cases the
subscript � means the time average from t � 10 to t � 40 days.
Zonal means are taken with respect to the centroid of the cyclonic
vortex. Contouring is the same as in Fig. 4.
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mediately prior to the final warming, when radiative
conditions are weakening the polar vortex and, in com-
bination with dynamical processes, strengthening the
Australian anticyclone. Figure 16 in Lahoz et al. (1996)
indicates that anticyclonic circulations approaching the
size of the polar vortex were present in the Southern
Hemisphere middle stratosphere in October 1992.

The case of ��2/�1 � 0.8 and z2 � z1 � 0 is shown in
Fig. 9 at times t � 0, 4, 8, 12, 16, and 20 days. At t � 4
the vortex begins to split in two approximately equal
parts, these becoming increasingly separated by t � 8.
Up until this time the anticyclone remains relatively
coherent and undeformed. At t � 8, however, the an-

ticyclone begins to interact with one of the separated
remnants of the main vortex. Because of their semi-
isolation from the other vortex remnant, their interac-
tion follows the general pattern for two unequal vorti-
ces observed so far. Now, however, the anticyclone is
the larger vortex, and the remnant the smaller, more
coherent vortex, with the result that the anticyclone
splits in two (from t � 12). The four vortices thus
formed subsequently pair up and move apart under
their induced circulation, apparently in a stable quasi
equilibrium and with little further interaction.

The case of ��2/�1 � 0.2 is arguably more relevant to
the winter stratospheric case. It illustrates that even a

FIG. 7. Evolution for ��2/�1 � 0.6 at (left to right) t � 0, 4, 8 days: (a) z2 � z1 � 0.4H, (b) z2 � z1 � �0.4H, and
(c) z2 � z1 � �0.8H.
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relatively small anticyclone can induce a significant po-
lar vortex deformation and deceleration of the vortex
circulation if it lies at the appropriate vertical offset.
Figures 10a,b show the cases z2 � z1 � �1.2H and
z2 � z1 � �2.0H, respectively, at times t � 0, 4, and 8
days. For z2 � z1 � �1.2H material is pulled off the
polar vortex from the central–lower levels. For z2 � z1

� �2.0H less material is pulled off, but it consists of
denser air from lower levels and has a potentially larger
impact on the vortex angular momentum. Figures 11a,b
show the corresponding zonal mean zonal velocity at
t � 0 and t � 10, respectively. In each case the vortex is
decelerated strongly, resembling a minor warming. The
regions of strongest deceleration are different between
the cases: deceleration is confined to the upper vortex
for z2 � z1 � �1.2H, whereas it extends lower for z2 �
z1 � �2, 0H. This pattern of deceleration is consistent
with the stronger upward influence of PV anomalies in
the compressible quasigeostrophic system identified
previously by the authors (Scott and Dritschel 2005).

5. Lower boundary influence

The presence of a lower boundary has an important
effect on the circulation induced by a PV anomaly in
the compressible quasigeostrophic system. As shown in
Scott and Dritschel (2005) the Green’s function of a PV
point anomaly close to a lower boundary contains a
strong barotropic component with logarithmic horizon-
tal dependence, which dominates the response away
from the anomaly. In addition, the Green’s function
singularity at the lower boundary is doubled due to the
image in the boundary, asymptoting to �1⁄2�r for small
r. For the dynamics of a single vortex, boundary effects
were found to become important when the separation
between the lowermost vortex and the lower boundary
was around 0.5–1 density-scale heights.

Since in the above analysis, the polar vortex is situ-
ated at a separation of 2H from the lower boundary, it
is important to establish whether the results hold at
smaller separations. Boundary effects will potentially
alter both the equilibrium solutions and the nonlinear
interactions. We therefore repeated the analysis for z1

� 4.5H, for which the lowermost level of the polar
vortex is separated by only 0.5H from the lower bound-
ary and boundary effects might be important. Although
it is interesting to consider even smaller separations,
these are less relevant to the stratospheric case, where
the vortex is generally well separated from the ground.
Our choice of z1 � 4.5H already corresponds to smaller
separations than typically observed in the winter atmo-
sphere.

It turns out that even at this small separation from

FIG. 8. Zonal mean zonal velocity, defined relative to the main
(cyclonic) vortex centroid at (left) t � 0 and (right) t � 10 days, for
the case ��2/�1 � 0.6 and for vertical offsets z1 � z2 � (a) 0.4, (b)
0.0, (c) �0.4, (d) �0.6, (e) �0.8, and (f) �1.2H. Dotted contours
denote negative values and the contour interval is 5 m s�1.
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the lower boundary, both equilibrium solutions and
nonlinear interactions are qualitatively unchanged, al-
though certain systematic differences are observed. For
example, the equilibrium solutions such as those shown
in Figs. 1–3 are in general characterized by a smaller
vertical tilt, with the vortices in the lowermost levels
less squashed together. This effect is likely due to the
intensification of the Green’s function singularity for
PV close to the lower boundary. Similarly the lower
levels of the vortices in general experience less defor-
mation for z1 � 4.5H than for z1 � 6H.

Because a greater fraction of the total vortex defor-
mation occurs at upper levels for z1 � 4.5H, the mea-
sure M will generally take smaller values than for z1 �
6H, on account of the density weighting in (3). As a
result, equilibria in the z1 � 4.5H case generally be-
come unstable at lower values of M , and it was found
that a lower-threshold value of M c � 0.00005 was a
more suitable indication of when to start the time-
dependent evolution of the instability; higher values of
M c resulted in vortices that were clearly deformed well
beyond their unstable equilibrium configuration.

Results of the time-dependent evolution of the insta-
bility are summarized in Fig. 12 for z1 � 4.5 H, corre-
sponding to the parameter sweep discussed in section
4a and Fig. 6 above. Again, there is a well-defined re-

gion in parameter space over which the strength of the
interaction is maximal. Note that, because of the con-
straint that both vortices lie entirely inside the domain,
the parameter sweep is truncated at large negative ver-
tical offset and circulation ratio; points on the boundary
of the shaded region correspond to cases where the
anticyclone exactly touches the lower boundary. Com-
parison of several individual cases (not shown) reveal
some differences between the cases z1 � 4.5H and z1 �
6H, for example, generally weaker tilting of the polar
vortex and shedding of vortex material over a deeper
vertical range for z1 � 4.5H, presumably a result of the
stronger barotropic component of the circulation. The
main conclusions, however, are unchanged; namely,
that the larger of the two vortices is always the more
significantly deformed, that a relatively modest anticy-
clone can lead to substantial polar vortex deformations,
and that the strongest interactions occur over roughly
the same, well-defined region of parameter space.

6. Discussion

Although highly idealized, the above results were de-
veloped as a model of vortex interactions in the winter
polar stratosphere. Our intention is to study processes
of vortex interaction general enough that they do not

FIG. 9. Evolution for ��2/�1 � 0.8, z2 � z1 � 0, at t � 0, 4, 8, 12, 16, and 20 days (from upper left to lower right; top view).
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depend on the finer details of the model, but which are
instead robust and fundamental properties of the fluid
dynamical system. In our model, the larger, cyclonic
vortex represents the polar vortex and the smaller, an-
ticyclonic vortex represents the Aleutian high, or other
similar anticyclonic circulations often observed in both

the Northern and Southern Hemisphere winter strato-
spheres. The approximation of these structures by uni-
form, oppositely signed PV anomalies having a sphe-
roidal undisturbed state leads to perhaps the simplest
configuration possible in three dimensions, some might
argue too simple. On the other hand, the zonal mean
zonal velocity profile associated with these structures is
not unrealistic (e.g., Fig. 8). Further, given the increas-
ingly well-accepted view of the polar vortex edge as a
region of intense PV gradients, the approximation of a
vortex patch is in some respects better than, for ex-
ample, the uniform PV gradient approximations used in
pioneering work on wave propagation. We emphasize
that our aim, in common with those early papers, is to
investigate fundamental processes that might be rel-
evant to the winter stratosphere, rather than to repro-
duce in detail the stratospheric evolution.

Our motivation for this study stems from the work of
O’Neill and Pope (1988) who identified coherent anti-
cyclonic circulations associated with the stationary
Aleutian high and eastward-traveling PV anomalies,
situated on the equatorward flank of the polar vortex.
Although the origin of these anomalies can be consid-
ered naturally in the framework of a wave–mean flow
decomposition, their subsequent development re-
sembles more closely the evolution of coherent vortical

FIG. 10. Evolution for (a) ��2/�1 � 0.2, z2 � z1 � �1.2H and (b) z2 � z1 � �2.0H at t � 0, 4, and 8 days (left to right).

FIG. 11. Zonal mean zonal velocity, defined relative to the main
(cyclonic) vortex centroid at (left) t � 0 and (right) t � 10 days, for
the case ��2/�1 � 0.2 and for vertical offsets (a) z2 � z1 � �1.2
H and (b) z2 � z1 � �2.0 H. Contours are the same as in Fig. 8.
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structures, involving strongly local and nonlinear dy-
namics, for example during the merger of traveling and
stationary anticyclones and the interaction of anticy-
clones with the polar vortex.

Observational evidence of equilibrium configura-
tions consisting of a polar vortex and Aleutian high (or
other anticyclonic circulations) has been documented in
previous studies. The polar vortex and Aleutian high
often coexist for relatively long periods without strong
interaction. The cross sections of zonal wind shown in
Figs. 5 and 9 of O’Neill et al. (1994) suggests a polar
vortex that is tilted away from the weaker circulation of
the Aleutian high with height, similar to the tilting dis-
cussed in section 3. Present meteorological analyses
are now of sufficient resolution that accurate three-
dimensional images of PV can be constructed through-
out the stratosphere. It would be interesting to examine
these datasets for further evidence of quasi-equilibrium
states involving the polar vortex and Aleutian high, and
to test the dependence of the morphology of equilib-

rium states predicted here on circulation strength and
vertical offset.

The most dramatic instances of vortex–vortex inter-
action above occur for substantial circulation ratios,
with ��2/�1 �0.6–0.8. Certainly these values appear
larger than anything that could be realistically attained
in the polar stratosphere during winter radiative condi-
tions. In the Southern Hemisphere late winter and
spring, however, a strong stationary anticyclonic circu-
lation, the Australian high, typically develops at the
same time as the polar vortex is weakening through ra-
diative processes. A striking example of the merger of
this stationary anticyclone with an eastward-traveling
anticyclone was discussed in Lahoz et al. (1996). Re-
constructed maps of PV on the 1100-K isentropic sur-
face suggest that the resulting anticyclonic circulation
was indeed of comparable magnitude to the polar vor-
tex. The examples of strong interaction shown here
may therefore turn out to be more applicable to the
dynamics of the Southern Hemisphere’s final warming.

In general, and as to be expected, smaller circulation
ratios resulted in less dramatic vortex–vortex interac-
tions. However, an interesting result is that for very
differently sized vortices, it is always the larger one that
experiences the stronger deformations. That is, even a
very weak anticyclonic circulation can induce large de-
formations to the polar vortex, and, if at the appropri-
ate vertical offset, can result in shedding of vortex ma-
terial and mean flow reduction similar to that observed
in minor stratospheric warmings.

One important ingredient that might significantly en-
hance the potential for a weak anticyclone to induce
strong polar vortex deformations is the presence of ex-
ternal forcing due, for example, to topography. O’Neill
and Pope (1988) suggested that strong vortex interac-
tions in the stratosphere relied on the presence of to-
pographic forcing. While a full treatment of the effect
of topography is clearly beyond the scope of the present
work, an idea of its effect can be obtained by consid-
ering the unstable evolution of equilibria beginning far-
ther within the margin of instability (closer together).
This can be practically achieved by following the equi-
librium finding procedure beyond the point where the
deformation M exceeds M c. The weak external strain-
ing flow that brings the vortices together here is similar
to the flow induced by topographic forcing. Under
these conditions the interaction of a relatively weak
anticyclone can be substantially enhanced. As an ex-
ample, Fig. 13 shows the evolution for case with ��2/�1

� 0.1 and z2 � z1 � 0. While the anticyclone again
remains relatively undeformed throughout the interac-
tion, the polar vortex is this time violently deformed,

FIG. 12. Same as in Fig. 6, but for polar vortex centroid located
at z1 � 4.5H. Parameter values are constrained by the require-
ment that both vortices lie entirely within the vertical domain.
Points on the boundary of the shaded region correspond to cases
where the anticyclone exactly touches the ground.
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becoming strongly sheared in the vertical and eventu-
ally splitting in two. A similar shearing of the polar
vortex occurred for other vertical offsets. The anticy-
clone in this case is half as strong as those presented in
the weak interaction cases above—a mere 10% of the
circulation of the polar vortex. The extent to which the
instability of the two-vortex system manifests itself al-
most entirely through the destruction of the much
larger polar vortex is remarkable.
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