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The drift of coherent vortices on a background gradient of potential vorticity has been
previously studied in the case of uniform gradient. Here an extension is made to the case where
the background gradient varies with a radial coordinate in an approximation to the variation of
planetary potential vorticity on a rotating sphere. It is found that accumulation of cyclonic
vorticity at the pole occurs provided the initial vortex anomaly exceeds the polar value of
potential vorticity by approximately 12%. Although polar accumulation becomes slower as the
deformation radius decreases, it persists for values as low as about 0.025 of the planetary
radius. Polar accumulation of cyclonic vorticity is also found to persist in fully turbulent flows
emerging from a large number of coherent vortex anomalies. In this case, a mixed zone in
potential vorticity develops in a polar surf zone surrounding the polar cyclone, with a sharp
jump at the surf zone edge defining a distinct subpolar jet whose structure depends on the
deformation radius. The results are discussed in the context of the coherent polar cyclones and
subpolar jets observed on the giant planets.

Keywords: Polar cyclone; Beta-drift; Jets; Potential vorticity staircase

1. Introduction

Recent observations by the space probe Cassini of the polar regions of Saturn revealed
the presence of an intense cyclonic (rotating in the same sense as the planetary rotation)
coherent vortex situated exactly on each pole (Sánchez-Lavega et al. 2006, Fletcher
et al. 2008). Analysis of thermal emissivity (Fletcher et al. 2008) indicated that these
structures are deep, spanning several density scale heights from the middle stratosphere
down into the troposphere. Their intensity and cloud structure has prompted analogies
with terrestrial hurricanes (Dyudina et al. 2008, 2009). Convective processes in the
atmosphere beneath the cyclones may provide a possible forcing mechanism for their
maintenance, although a detailed dynamical picture of the cyclones remains beyond the
reach of current observations.

While the polar cyclones may certainly be maintained by external forcing through
convective processes and fully three-dimensional motions, it is nevertheless interesting
to consider whether simple dynamical processes may be able to explain their presence.
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In particular, it is interesting to note that recent single layer shallow water calculations
of forced turbulence on the sphere also exhibit strong accumulations of cyclonic
vorticity at the poles (see Scott and Polvani (2007), figures 9 and 11, and Scott (2010),
figure 1), which suggests the possibility that such structures may arise generically from
quasi-two-dimensional dynamics.

The tendency for coherent vortices to drift latitudinally on a background planetary
gradient of potential vorticity, so called �-drift, has been known for some time and has
been extensively studied in the case of a linear background gradient of potential
vorticity (e.g. Reznik 1992, Nycander 1993, Sutyrin et al. 1994, Sutyrin and Morel 1997,
Lam and Dritschel 2001, Flor and Eames 2002); cyclonic vortices (positive in the
northern hemisphere) drift poleward, while anticyclonic vortices drift equatorward.
In this simplest case, the final position of such vortices depends on parameters such as
the vortex intensity and size relative to the background vorticity and length scales. One
aim of this article is to examine to what extent the basic results established for the
�-plane case must be modified in the case of spherical polar geometry, for which the
planetary vorticity gradient goes to zero at the pole. As discussed below, the spherical
geometry fixes a length scale in addition to the Rossby deformation radius (which on
the �-plane may be scaled out of the problem) and the ratio of these influences the speed
of the drift on the sphere. The spherical geometry also introduces a North–South
asymmetry that is absent in the �-plane case.

In the case of isolated vortices drifting on a resting basic state, the drift will naturally
favour an accumulation of cyclonic vorticity in polar regions. The situation is further
complicated, however, when the background flow is fully turbulent, as is the case on the
giant planets themselves. The shallow water experiments of Scott and Polvani (2007)
suggest that such drift may still be relevant. The forcing in those experiments is weak
but its cumulative effect may eventually result in vortices whose potential vorticity
exceeds the planetary value at the pole. Identifying any systematic drift in these fully
turbulent flows, however, has so far not been possible. Here we examine the somewhat
simpler system of a turbulent flow, freely decaying from an initial condition composed
of many coherent vortices. We find that a systematic drift is indeed evident in the fully
turbulent flow, despite the strong interactions between vortices.

In the case of fully turbulent flows, the Rossby deformation radius additionally
affects the jet structure that emerges near the poles. Comparing this jet structure with
those observed on the giant planets suggests that the relevant deformation radius for the
polar jets may be larger than the usual estimates based on the structure of coherent
vortices such as the Great Red Spot, or on the gravity wave phase speeds observed
following the impact of comet Shoemaker-Levy (e.g. Cho et al. 2001, Ingersoll et al.
2004); that is, the jets may be relatively deep structures. A similar conclusion was made
from the forced dissipative shallow water experiments of Scott and Polvani (2007),
Scott (2010). The deep nature of these jets has also been noted from observations based
on thermal emissivity (Fletcher et al. 2008) and has been found in recent three-
dimensional general circulation model calculations (Lian and Showman 2008,
Schneider and Lui 2009).

The remainder of this article is organized as follows. In section 2, we describe the
model equations and geometry used in the experiments, and give a brief discussion of
the numerical scheme. In section 3, we examine the vortex drift in the simplest case of
isolated vortices to illustrate the North–South asymmetry of the drift and polar
accumulation of cyclonic vorticity at various values of vortex intensity and deformation
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radius. In section 4, we consider the polar accumulation in the case of a fully turbulent

flow arising from many interacting vortices, and examine the region of homogeneous

potential vorticity that emerges over the pole due to turbulent mixing. We also briefly

consider how undulations of the first circumpolar jet depend on the deformation radius

and consider the global structure of the potential vorticity staircase that results from the

turbulent mixing. We provide a short summary of the results in section 5.

2. Model equations and numerical scheme

We consider the quasi-geostrophic shallow water equations in a cylindrical domain

using a polar coordinate system (r, �) for a fluid differentially rotating about the

cylindrical axis r¼ 0:

@q

@t
þ Jð , qÞ ¼ 0, ð1aÞ

ðr2 � L�2D Þ ¼ q� fðrÞ: ð1bÞ

Here, q(r, �, t) is the potential vorticity,  is the geostrophic streamfunction, f(r) is the

radially dependent Coriolis parameter and LD is the Rossby radius of deformation,

measuring the relative importance of stratification and rotation. We make the polar

�-plane approximation, f¼ f0� �r
2, where f0 is the polar value of the Coriolis

parameter. This is the polar equivalent to the mid-latitude �-plane. Taking f0¼ 2� and

� ¼�/2a2 gives the first order approximation to the actual variation of the Coriolis

parameter near the pole on a spherical planet of radius a rotating with angular

velocity �. The radial and azimuthal coordinates in the cylindrical domain can be

identified with the latitudinal and longitudinal coordinates in spherical geometry near

the pole by the correspondence (r, �)$ (a�c, �), where �c is co-latitude and � is

longitude. The approximation is accurate to within about 8% as far as one radian

co-latitude from the pole (or an arc distance of one planetary radius) and provides a

useful simplified geometry in which to consider polar flows. In a single layer barotropic

system, Waugh (1993) used this procedure to represent a variable f on an infinite plane

and found good agreement between the planar results of variable f and those obtained

with full spherical geometry.
Equations (1a, b) are solved using the Contour Dynamics Semi-Lagrangian scheme

(Dritschel and Ambaum 1997, Macaskill et al. 2003). The potential vorticity

distribution q(r, �, t) is assumed to be piecewise uniform, whereby a continuous

distribution is represented by a series of small discontinuities across a finite set of

contours. Many contours permit high resolution of the potential vorticity distribution,

and the efficiencies of this method over the often used pseudo-spectral method for the

simulation of freely decaying two-dimensional turbulence were demonstrated recently

by Dritschel and Scott (2009). In the simulations described below, 100 contours are used

to describe the background potential vorticity field, each with a discontinuity of

�q¼�/100, representing potential vorticity values from 2� at r¼ 0 to � at r¼ a

(corresponding to a latitudinal domain between �/2 and �/2� 1). The horizontal grid

used for the PV inversion in (1b) comprises 128 radial and 256 azimuthal grid points;
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the PV itself is retained on a grid four times finer. For full details of the numerical
scheme, see Macaskill et al. (2003).

3. b-drift in polar geometry

We first consider the simplest case of the drift of a single vortex on a background
potential vorticity gradient, a situation studied in detail by many authors for the case of
the �-plane (e.g. Reznik 1992, Nycander 1993, Sutyrin et al. 1994, Sutyrin and Morel
1997, Lam and Dritschel 2001, Flor and Eames 2002, among others). For the case of a
vortex patch anomaly of finite radius and intensity, the system is governed by two non-
dimensional numbers, av/LD and q0v=�LD, where av and q0v are the radius and intensity of
the vorticity anomaly, LD is the deformation radius and � is the constant background
potential vorticity gradient. In a series of high-resolution numerical experiments, Lam
and Dritschel (2001) showed that while the longitudinal component of the drift velocity
increases monotonically with q0v (for fixed � and LD), the latitudinal component peaks
at an intermediate value.

On the sphere, the spherical radius, a, introduces an extra length scale, which means
that the deformation radius cannot be eliminated by rescaling. In the �-plane
approximation, the above two non-dimensional parameters are replaced by av/LD,
q0v=�L

2
D, a/LD. If the ratio of vortex anomaly radius to spherical radius, and av/a, is

small, however, then locally the system resembles the �-plane, with � equal to the local
gradient of f(r) and we expect all the results of the planar case to apply to the spherical
case as long as the vortex does not move over large latitudinal distances. Important
differences enter at the global scale because of the variation of f with r. First, since f
increases with r, anticyclones drifting to larger r will feel a stronger background
potential vorticity gradient than their cyclonic counterparts drifting to smaller r.
Destabilizing effects such as Rossby wave radiation are therefore likely to be larger for
anticyclones. Similarly, the latitudinal drift will be modified for large vortex excursions
in a non-trivial way. Although an anticyclone moves such that it will experience
stronger background PV gradient, this is compensated by its perturbation PV, which
decreases more rapidly with the latitudinal distance moved from its initial position than
that of a cyclone.

Perhaps the most important difference, however, is that the background vorticity
gradient vanishes altogether at the pole itself and so any tendency to drift vanishes as
this is approached. Quantitatively, the drift of vortices is limited by the intensity of the
anomalous vorticity relative to the background planetary rotation, as on the �-plane,
since the potential vorticity of the vortex anomaly is conserved following the flow. On
the �-plane the vortex may drift up to a maximum distance given by jq0vj=�, since at this
point the potential vorticity of the vortex will equal that of its surroundings. A trivial
extension on the �-plane gives a maximum drift distance of jr2v � r2j ¼ jq0v=�j. In
particular, a cyclonic vortex would be expected to reach the pole if its potential vorticity
exceeds the polar potential vorticity f0¼ 2�. Finally, the destabilizing effects arising
from Rossby wave radiation also decrease toward the pole, and so coherent cyclones
drifting there will be expected to persist on long time scales.

We illustrate the above by a series of numerical experiments from initial conditions
consisting of a positive (cyclonic) vortex of intensity qv at position r¼ 0.5, �¼ 0 and a
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negative (anticyclonic) vortex of intensity �qv at position r¼ 0.5, �¼�, as shown in

figure 1 (left). (Here, and in the following, length and time scales are considered to be

nondimensionalized with respect to a and �.) In each case, the radius of the vortex

anomaly is fixed at av¼ 0.02. This value is constrained, on the one hand, by the

numerical requirement that the vortex radius be larger than the spacing between the

contours representing the background potential vorticity gradient (here 100 contours

equally spaced in r gives a contour spacing of �r¼ 0.01); on the other hand, for

simplicity it is desirable to consider the situation where the variation of the planetary

vorticity across the vortex is small. The only remaining free parameters then are the

vortex intensity qv and deformation radius LD. Here we consider values qv� f0¼ 0,

0.125, 0.25, 0.5, 1 and LD¼ 0.4, 0.1, 0.025.
As an example, figure 2 shows snapshots of the relative vorticity field for the case

qv� f0¼ 1 and LD¼ 0.4 at times t¼ 40, 80, 120. The asymmetry between the cyclone

and anticyclone is clear, even at the earliest time, when the cyclone is relatively

undisturbed whereas the anticyclone has already lost a significant fraction of its original

area. The asymmetry becomes still more pronounced at later times, with the anticyclone

eventually destabilizing and breaking up entirely. On the other hand, the cyclone drifts

into the weak background potential vorticity gradients near the pole and remains intact

there. A similar picture is seen at smaller values of the deformation radius. Figure 3

shows the case LD¼ 0.025: although the evolution is much slower here due to the

Figure 1. Initial conditions for the experiments described in section 3 (left panel) and section 4 (right panel).
Relative vorticity is shown; black and white correspond to negative and positive values, and grey is zero.

Figure 2. Relative vorticity at t¼ 40, 80, 160 (left to right; time, here and elsewhere, in units of background
rotation, ��1) for the case LD¼ 0.4, qv� f0¼ 1.
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smallness of LD, again the anticyclone becomes highly distorted and eventually breaks
up. The cyclone drifts poleward but is inhibited by a ring of anticyclonic relative
vorticity that accumulates around the core, reducing the effective cyclonicity of the
vortex (Korotaev and Fedotov 1994). In some cases this ring can be seen to undergo an
instability, similar to that described in Lam and Dritschel (2001), whereby the ring is
shed and the cyclone moves further poleward.

The drift of the vortices for various values of qv� f0 and LD is summarized in
figures 4 and 5. Figure 4 shows the radial positions of the vortex centroids as a function
of time r(t). In all cases there is a clear increase in radial drift velocity with increasing q0v,
as expected. However, the cyclone-anticyclone asymmetry is also evident. At both
LD¼ 0.4 and LD¼ 0.1, whereas all but the weakest cyclones eventually drift to within
r¼ 0.1 of the pole, the drift of anticyclones towards r¼ 1 is more dependent on the
vortex anomaly. The interpretation is that there is a threshold cyclonic vorticity, above
which cyclones will reach the pole. This threshold is slightly greater than the polar
vorticity f0 because of the partial shielding effect arising from entrainment of ambient
potential vorticity. At the smallest value of deformation radius LD¼ 0.025, the drift is
still underway at the latest time.

An alternative view can be seen by plotting the trajectories of the vortex centroids in
the (r, �)-plane, as shown in figure 5. Again the polar accumulation of cyclones is clear
in all cases. From this figure, it can also be seen that the initial drift angle is relatively
insensitive to initial vortex anomaly. For the values considered here, the drift speeds in

0 10,000t
0

1

r

(a)

0 10,000t
0

1

r

(b)

0 10,000t
0

1

r

(c)

Figure 4. Radial position of the vortex centroid against time, r(t): (a) LD¼ 0.4, (b) LD¼ 0.1, (c) LD¼ 0.025;
jqv� f0j ¼ 0, 0.125, 0.25, 0.5, 1, with larger values of jqv� f0j exhibiting stronger drift to r¼ 0, 1.

Figure 3. Relative vorticity at t¼ 160, 320, 640 for the case LD¼ 0.025, qv� f0¼ 1.
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both the latitudinal and longitudinal directions increase with increasing vortex anomaly
(the peak in latitudinal drift speed found by Lam and Dritschel (2001) occurred at
larger vortex anomaly than the largest considered here).

4. Polar accumulation in turbulent flow

The case of a single coherent vortex in a resting background atmosphere is a highly
simplified situation. To address the question of whether �-drift might account for the
polar accumulation of cyclonic vorticity observed on planetary atmospheres, it is more
appropriate to consider the evolution of fully turbulent flows. To do so, we consider
here an initial condition consisting of a uniform distribution of an equal number of
positive and negative coherent vortices. For simplicity, and to minimize the number of
additional parameters, we choose vortices all having the same area av¼ 0.02 (as for the
isolated vortices in the previous section), and anomalous intensity q0v ¼ qv� f ¼ �0:25�
(i.e. a potential vorticity differing from the local background value by 0.25�). The main
parameter governing the turbulent intensity of the subsequent evolution is the area
fraction Af of the domain covered by vortices. Here we take Af¼ 0.04, for which the
area of the polar mixed zone in the final state is roughly consistent with the location of
the polar-most jets on the giant planets, as discussed further below. The initial relative
vorticity corresponding to these values is shown in figure 1 (right).

As an example, the evolution of the case with LD¼ 0.4 is shown in figure 6, which
shows the relative vorticity at early, intermediate and late times. At early time, t¼ 100, a
highly turbulent flow field has emerged from the interactions of the initial vortex
population. The turbulent intensity is strongest away from the pole, where advection of
background planetary vorticity contributes to the relative vorticity field. Near the pole,
already at early times, the accumulation of cyclonic vorticity (white) is clear. By t¼ 400
the turbulent cascade of enstrophy to smaller scales is visible throughout the domain,
with the exception of the coherent cyclone near the pole, which retains most of its area
as time progresses. By the end of the calculation at t¼ 10,000 the cascade of enstrophy
has proceeded further everywhere throughout the domain, while the coherent cyclone
remains intact and settles into a stable position at the pole.

During the intermediate evolution to this final state, a prolonged period exists where
the polar cyclone is well-developed but not situated exactly at the pole. The weak

(a) (b) (c)

Figure 5. Trajectories of vortex centroids (r(t), �(t)): (a) LD¼ 0.4, (b) LD¼ 0.1, (c) LD¼ 0.025; jqv� f0j ¼ 0,
0.125, 0.25, 0.5, 1. r¼ 0 is at the centre of the plot.
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planetary potential vorticity gradients near the pole provide a weak constraint to its
location. Further, its off-pole location leads to efficient chaotic mixing of planetary
vorticity over the polar region (middle panel of figure 6) and leads quickly to a potential
vorticity profile that is perfectly homogenized over this region. The width of this region
increases both with the area fraction Af and initial potential vorticity anomaly qv, both
of which increase the total energy of the flow (not shown). The dependence is consistent
with relations obtained between jet spacing and jet strength in the simple zonally
symmetric configurations considered by Dunkerton and Scott (2008) and Dritschel and
McIntyre (2008) on the sphere and �-plane, respectively.

The azimuthally averaged potential vorticity for the above case is shown in
figure 7(a), demonstrating that the potential vorticity is perfectly mixed across the pole
between the cyclone near r¼ 0 and approximately r¼ 0.35. The perfect homogenization
of potential vorticity in this region illustrates how closely the limiting azimuthally
symmetric case and perfect staircase can be approached in a fully turbulent situation.
Mixing is slower farther from r¼ 0, with only partial mixing of the azimuthally
averaged potential vorticity in this case. Other cases, however, exhibit more complete
mixing at later times. The complexity of the flows at large LD makes very long time
integrations prohibitively time-consuming. However at intermediate to small LD, very
long integrations were possible: in these cases it appears, qualitatively speaking, that

0 1r
1

2

(a)

0 1r
1

2

(b)

0 1r
0.04

0

0.04(c)

Figure 7. (a) Azimuthally averaged potential vorticity at t¼ 10,000 for the case LD¼ 0.4; (b) and
(c) azimuthally averaged potential vorticity and azimuthal velocity, respectively, at t¼ 100,000 for the
LD¼ 0.05.

Figure 6. Relative vorticity at t¼ 100, 400, 10,000 for the case LD¼ 0.4, Af¼ 0.004, q0v ¼ 0:25.
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enstrophy production takes place on a longer time-scale (that associated with the large-
scale dynamics, which typically increases as LD decreases) than enstrophy dissipation,
which is governed by local small-scale potential vorticity fluctuations (here the same
across calculations). Figure 7(b) shows the azimuthally averaged potential vorticity at
time t¼ 100,000 for the case of LD¼ 0.05. By this time, almost all the filamentary
turbulence has been dissipated, leaving behind a well-defined staircase structure
consisting of almost perfectly mixed zones between narrow regions of strong potential
vorticity gradients. The corresponding azimuthally averaged azimuthal velocity is
shown in figure 7(c) and consists of the usual sharp and narrow jets coinciding with the
jumps in the potential vorticity.

The steep potential vorticity jumps shown in figure 7(b) are noteworthy in view of the
difficulty that previous studies of freely decaying turbulence have had in producing
similar structures. It is likely that this difficulty is due to finite Reynolds number effects.
Calculations using pseudo-spectral or other traditional methods are unlikely to be able
to conserve energy over sufficiently long times for staircase formation to become
manifest. Here, on the other hand, the effectively inviscid nature of the Lagrangian
contour representation means that energy dissipation is very weak, even over the long
time-scales under consideration. By essentially inviscid is meant the total absence of
diffusion across potential vorticity jumps, such as those that form in the staircase;
dissipation does occur, but only weakly though the removal of filamentary structures
below a certain scale. For a detailed comparison between the contour dynamical and
pseudo-spectral methods in representing freely-decaying two-dimensional turbulence
see Dritschel and Scott (2009). Although the staircase structure emerging in figure 7(b)
can also be obtained on the �-plane (again provided suitably non-dissipative numerical
methods are used – work to be published in the future), we note again that the enhanced
stirring by the polar cyclone in the present case leads to particularly efficient mixing
over the polar cap.

The mixed zone in the polar regions, and the structure of the first complete jet from
the pole, are interesting in other aspects. As can be seen in figure 8, the structure of the
first jet varies significantly with LD. For LD0 0.2 the potential vorticity distribution in
the polar regions is largely azimuthally symmetric; however, at smaller LD the
azimuthal structure becomes increasingly distorted. In particular, at LD¼ 0.025, there
are large undulations of the first polar jet resulting from the shorter range nature of the
Helmholtz operator governing the potential vorticity inversion (e.g. McIntyre 2008, for
a recent discussion). A similar pattern was noticed in the forced-dissipative shallow
water calculations of Scott and Polvani (2007) (see figure 9 therein). The present
calculations illustrate that the undulations do not only arise in the presence of forcing,
but are a persistent feature of the small deformation radius. (The calculations at the
three lowest values of LD were continued for a longer time, with only slight changes in
the qualitative structure of the first polar jets.) Finally, we note again that in all cases
the persistence of the cyclonic vortex at the pole is a robust feature.

5. Conclusions

Provided the latitudinal migration of coherent vortices is small relative to the planetary
radius, the drift induced by the interaction of vortex anomalies with the background
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planetary potential vorticity may be well-approximated by the �-plane system.
However, when the vortices drift over distances comparable to the planetary radius
asymmetries arise from the non-uniformity of the planetary vorticity gradient. The
asymmetry first appears in the tendency for southward drifting anticyclones to be
destabilized by the increased planetary vorticity gradient. Northward drifting cyclones,
on the other hand, may approach the weaker planetary vorticity gradients at the pole
without becoming significantly distorted. It was found that provided the potential
vorticity anomaly exceeds the polar value by 0.25, i.e. 1/8 of the polar potential
vorticity, then the vortex typically drifts to within r¼ 0.1 of the pole, in which region it
then remains.

The polar drift of cyclonic vortices persists even when the initial configuration
comprises many vortices and the subsequent flow evolves turbulently. In this case the
turbulent mixing results in a homogeneous region of potential vorticity surrounding
the polar cyclone that emerges. Mixing is more efficient in this region because of the
weakness of potential vorticity gradients. It is achieved partially by the stirring induced
by the polar cyclone itself, which typically sits slightly displaced from the pole and
precesses about it, giving rise to a chaotic mixing type flow in the vicinity. Mixing at
larger r also takes place, but on longer time scales. At the edge of the well-mixed polar
surf zone the abrupt jump in potential vorticity to the local planetary value is associated
with a strong zonal jet.

The tendency found in the above calculations, particularly those at small deformation
radius, for the polar cyclones to precess around the pole is not observed in the polar
regions of Jupiter and Saturn. Of course, on the planets, various other effects such as
radiative cooling over the pole, or forcing from below, may act to further constrain the

Figure 8. Potential vorticity at t¼ 100,00 for the cases LD¼ 0.025, 0.05, 0.1, 0.2, 0.4, 0.8, Af¼ 0.004 (left to
right, top to bottom) q0v ¼ 0:25.
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motion into zonal symmetry, whereas in the above calculations no such forces are
present other than the dynamical effect of the planetary potential vorticity. The same
applies to the subpolar jet that occurs at the edge of the polar surf zone, the
corresponding jets on the planets appearing very zonal (e.g. Fletcher et al. 2008). While
it is conceivable that weak zonally symmetric forcing could result in strong zonal
alignment of the planetary jets, even at small deformation radius, an alternative
explanation, consistent with the increase in zonal undulations with decreasing
deformation radius found above, is simply that the planetary jets may be relatively
deep structures.
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