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Abstract. Existence of strong (i.e. classical) solutions to the generalized inverse of the three-
dimensional quasi-geostrophic equations, describing the large-scale motion of the atmosphere and
oceans, is proved for a finite time interval. Both the dissipative and the nondissipative cases are
considered. The spatial domain considered is doubly periodic in the horizontal directions and is
bounded above and below by rigid, horizontal surfaces. The generalized inverse is defined as the
solution to the Euler–Lagrange equations, obtained by minimizing a weighted sum of errors in
the quasi-geostrophic equations, boundary conditions, and data, and thus represents a solution that
approximates both the equations and the data available inside the domain. The proof relies on
the Schauder fixed-point theorem applied to the appropriate Hölder function spaces. The finite
time interval over which the proof is valid is not arbitrary, but depends on the norms of the initial
conditions in such a way that, as the norms of the initial conditions increase, the time interval
decreases.

1. Introduction

The quasi-geostrophic equations, both dissipative and nondissipative, are a widely used
approximation to the motion of the atmosphere and oceans, conventionally derived from the
primitive equations by asymptotic expansion in small Rossby number [17]. Their domain of
applicability is primarily that of synoptic to planetary scale motions in midlatitudes, and their
validity, including finite time existence and uniqueness results, has been discussed in detail
in, for example, [4–7, 9]. Computationally they represent a significant advantage over the
full primitive equations from which they are derived, by only representing the broad scale,
Rossby wave mode and filtering the two fine scale, gravity wave modes. They thus represent
the essential broad scale, slow time motion of the atmosphere and are an example of balanced
dynamics. Conceptually they provide a useful simplification of the full dynamics, and a starting
point for further idealizations and analytic investigations.

When such equations are used for data assimilation, undetermined errors are included
in the equations and additional data is specified, typically leading to an inverse problem. In
the atmosphere and oceans the data can take many forms, from satellite measurements of
sea-surface elevation to radiosonde measurements of upper troposphere temperature, and a
measurement functional must be specified to relate the particular measured quantity to the
appropriate model variables [3]. In general, a solution is sought that approximates both the
model equations and the data, or, equivalently, the equations are used to interpolate between
the (typically sparse) data values (see, e.g., [3,8,21] for recent overviews of data assimilation in
atmospheric and oceanic contexts; also see [19] and other articles in the Meteorological Society
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of Japan special issue on Data Assimilation in Meteorology and Oceanography: Theory and
Practice). In variational assimilation the undetermined model and data errors are minimized in
a weighted least-squares sense to provide a generalized inverse solution. If the weights in the
minimization are chosen as the covariances of the model and data errors then it can be shown
(e.g. [3]) that the generalized inverse solution is optimal; under suitable further assumptions
about the means and covariances of the model and data error the procedure is equivalent to
optimal interpolation. As an example, [8] used a single-layer quasi-geostrophic model together
with measurements of streamfunction at model gridpoints to construct inverse solutions in a
simple idealized setting.

The generalized inverse solution, if it exists, is generally obtained by solving the Euler–
Lagrange (EL) equations that result from the minimization of the model errors and the data
errors (here ‘model errors’ includes errors in the initial and boundary conditions, as well as
errors in the governing equations themselves). For most practical purposes computational
methods must be used. When the governing equations are linear (e.g. the linearized quasi-
geostrophic equations) a representer analysis can be used to reduce the dimension of the state
space over which the minimizer is sought, from the number of degrees of freedom of the
discretized equations, to the number of data values [3]. When the governing equations are
nonlinear, however, this reduction of dimension can be carried out only by approximating the
nonlinear EL equations with a sequence of linear equations and solving at each iteration
(see [13] and [8] for applications to the two-dimensional Euler equations and the quasi-
geostrophic equations). The validity of such iterative approaches depends upon the existence
and regularity of the solutions to the nonlinear EL equations that the linear sequence of
equations approximates.

This paper proves the existence of strong solutions of the generalized inverse of the quasi-
geostrophic equations. The applicability of the result is therefore to provide confidence in
the numerical iterative approaches described above and which are currently being explored as
viable assimilation tools in the study of the atmosphere and oceans. Since the results presented
below are valid on finite time intervals that depend on the norms of the initial conditions, they
also provide information on the time intervals over which such numerical schemes can be
expected to converge.

In particular, this paper proves the existence of solutions to the EL equations obtained by
seeking a best fit to the quasi-geostrophic equations (dissipative and nondissipative) and to the
data. The best fit is defined as the minimizer, belonging to a class of admissable functions, of a
penalty functional that is a weighted sum of residuals representing errors in the equations, in the
boundary and initial conditions, and in the data. The EL equations are then a coupled system
comprising the quasi-geostrophic equations and their adjoint equations in a suitable Hilbert
space formulation, as described in section 2. After some preliminaries in section 3, existence
is proved for the nondissipative case in section 4 and for the dissipative case in section 5. The
proof is shown to be valid on a finite-time interval that depends upon the initial conditions;
because of the coupled nature of the EL equations an existence proof on an arbitrary, finite-
time interval is not possible by the methods used here. The approach follows that of [14], used
to prove the existence of solutions to the generalized inverse of the two-dimensional Euler
equations, and makes use of the existence results of the quasi-geostrophic equations in [4]
and [7]. An error in [14] is corrected and its effect on the time interval over which the proof
is valid is indicated. Some remarks are given in section 6 on implications and extensions, as
well as on the dependence of the time interval on the initial conditions and on the dissipation
coefficient.
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2. Model formulation

The quasi-geostrophic system used here is the same as that described in [4, 7], and derived
fully in, e.g., [17], with constant horizontal and thermal dissipation coefficient, K (see [6, 17]
for a discussion of this assumption), and zero vertical dissipation, describing the evolution of
vorticity, ω and potential temperature, θ :

ωt + u · ∇ω − K�ω = βv + S0 + s in BT , (2.1a)

ω = ωI + ε in B at t = 0, (2.1b)

θt + u · ∇θ − K�θ = HX
0 + hX in �X

T , (2.1c)

θ = θXI + δX in �X at t = 0, (2.1d)

where u = (u, v) and (ω, θ) are related, at each time t , by an elliptic equation for the quasi-
geostrophic streamfunction, ψ :

�̃ψ = �ψ + ρ−1(ραψz)z = ω in B, (2.2a)

ψz = θX in �X, (2.2b)

u = ∇⊥ψ in B. (2.2c)

The following notation has been used: B = �×(0, h), where � = (0, 1)×(0, 1), is the spatial
domain, a rectangular box with coordinates x = (x, y, z) = (xH , z); �z = (0, 1)× (0, 1)× z

is a horizontal cross section at fixed z; BT = B × (0, T ), �T = �× (0, T ), �z
T = �z × (0, T )

where (0, T ) is a fixed time interval; ∇ = ( ∂
∂x

, ∂
∂y
), ∇⊥ = (− ∂

∂y
, ∂
∂x

), and � = ∂2

∂x2 + ∂2

∂y2 are
horizontal gradient and diffusion operators; subscripts x, y, z, t denote partial derivatives; S0,
HX

0 and ωI , θXI are prescribed forcing functions and initial conditions; s, hX and ε, δX are
undetermined errors in the forcing and initial conditions; α and ρ are given, positive, increasing
functions and β is a constant Coriolis parameter; the superscript X = 0, h represents the lower
or upper surface at z = 0 and z = h. All variables are considered to be periodic with period
one in both horizontal directions. As noted in [7] embedding and completeness results for
more general function spaces also hold for the restricted spaces of doubly periodic functions
used here.

The nondissipative form of (2.1a)–(2.1d) and (2.2a)–(2.2c) with K ≡ 0, will be denoted
by QG in the following, and the dissipative form, with K > 0, will be denoted by DQG. Also,
the simplified QG or QGD equations (SQG or SQGD respectively) are obtained from (2.1a)–
(2.1d) and (2.2a)–(2.2c) by setting θXI = δX = HX

0 = hX = 0 in (2.1c) and (2.1d), so that
θ ≡ 0 on �̄X, X = 0, h, ∀t ∈ [0, T ].

Setting s, hX and ε, δX identically zero corresponds to the assumption that the model
equations represent the dynamics perfectly and that the forcing functions and initial conditions
are known exactly. Finite-time existence results for these ‘forward’ equations were presented
in [4] (K > 0) and [7] (K = 0). When additional data is included, for example by requiring
one of the model fields to be close to some measured value at a particular time and space
location, the forward problem as stated above will in general become overspecified. For this
reason the undetermined error terms s, hX and ε, δX are included in the model equations. In
practical applications these errors could arise from inaccuracies in the model equations (e.g.
because of oversimplification of the full equations of motion) or from poor knowledge of actual
forcing terms (e.g. heating) in the atmosphere or oceans.

The inverse problem consists of determining the error terms s, hX, ε, δX given the
additional data that is to be fitted by the model variables (ω, θ). Assuming N data
measurements di , i = 1 . . . N , with unknown data error εi , the model variables can be related
to the data through N measurement functionals:

Li (ω, θ) = di + εi in BT for i = 1 . . . N. (2.3)
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Here Li are linear measurement functionals of the form

Li (ω, θ) =
∫
B̄T

KiG(ω, θ)

=
∫
B̄T

Kiψ

=
∫
B̄T

Ki (x, t,xi , ti)ψ(x, t) dx dt (2.4)

where Ki (·, ·,xi , ti) : BT → R is any smooth function with support in a neighbourhood of
the data location (xi , ti) [3]. Note that, at each t , the streamfunction ψ is determined uniquely
by (ω, θ0, θh) in (2.2a) through the Green’s function representation

ψ = G(ω, θ) =
∫
B̄

gω +
∫
�̄0

gθ0 +
∫
�̄h

gθh, (2.5)

where g is the fundamental solution for �̃. The role of Ki is to mimic the tendency of an actual
measurement to represent the measured field over a finite area in space and time (i.e. not at
an isolated point). That the streamfunction is used in (2.4) is for notational convenience only;
the measurements could equally well be made on ω or θ or indeed on any derived quantity or
combination thereof. In the following, vector notation will also be used for the measurement
functionals, data and data error: L = (L1, . . . ,LN), etc.

The generalized inverse solution is defined as the minimizer of s, hX, ε, δX, and ε in a
weighted, least-squares sense [3,18]. In particular, it is the minimizer of the penalty functional
J given by

J [ω, θ ] =
∫
B̄T

∫
B̄T

sWs +
∫
B̄

∫
B̄

εV ε

+
∑

X=0,h

( ∫
�̄X

T

∫
�̄X

T

hXŴhX +
∫
�̄X

∫
�̄X

δXV̂ δX
)

+
∑
k

∑
l

εkwklεl, (2.6)

where the weighting kernels W , Ŵ , V and V̂ are real-valued functions of BT ×BT , �T ×�T ,
B ×B, �×� respectively and where w = [wkl] is a N ×N matrix where N is the number of
data points. If the model errors s, hX, ε and δX are considered as zero-mean random variables
then the weighting kernels W , Ŵ , V , and V̂ are defined as the functional inverses of the
auto-covariances Q, Q̂, A and Â of s, hX, ε and δX [20]:∫

B̄T

Q(x, t,x′, t ′)W(x′, t ′,x′′, t ′′) dx′ dt ′ = δ(x − x′′, t − t ′′), (2.7)

and similar expressions for the other kernels. Similarly, w is taken as the matrix inverse of the
covariance of the data error, also considered as a zero-mean random variable: w = εεT . In
practice, the covariances Q, Q̂, A, Â, and w−1 are usually poorly known, and one of the major
challenges in modern data assimilation lies in their estimation. In the following the error terms
s, hX, ε, δX and ε are considered rather as deterministic control variables, and the covariance
kernels Q, etc are formally related to the weighting kernels W , etc, through expressions of
type (2.7).

By the calculus of variations (e.g. [10]), any minimizer of (2.6) must satisfy the following
coupled system, referred to as the EL equations:

ωt + u · ∇ω − K�ω = S(ω) in BT , (2.8a)

ω = ω̃I in B at t = 0, (2.8b)

θt + u · ∇θ − K�θ = H(θ) in �X
T , (2.8c)

θ = θ̃ I in �X at t = 0, (2.8d)
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−µt − u · ∇µ − K�µ = S(µ) in BT , (2.9a)

µ = 0 in B at t = T , (2.9b)

−λt − u · ∇λ − K�µ = H(λ) in �X
T , (2.9c)

λ = 0 in �X at t = T , (2.9d)

for X = 0, h. Here

S(ω) = βv + S0 +
∫
B̄T

Qµ, ω̃I = ωI +
∫
B̄

Aµ, (2.10a)

H(θ) = HX
0 +

∫
�̄X

T

Q̂λ, θ̃ I = θXI +
∫
�̄X

Âλ, (2.10b)

S(µ) = G(∇⊥µ · ∇ω + βµx,∇⊥λ · ∇θ) + L′(δBT
, 0)D[d − L(ω, θ)], (2.10c)

H(λ) = G(∇⊥µ · ∇ω + βµx,∇⊥λ · ∇θ) + L′(0, δ�X
T
)D[d − L(ω, θ)], (2.10d)

whereG(·, ·) is defined in (2.5), where δBT
= δBT

(x−x′, t−t ′) and δ�X
T

= δ�X
T
(xH −x′

H , t−t ′)
are the Dirac delta functions on BT and �X

T , X = 0, h, and where the prime on L′ indicates
measurement on the primed arguments.

Equations (2.8a)–(2.8d) and (2.9a)–(2.9d) are called the forward and adjoint equations,
respectively. Together they comprise a coupled system of nonlinear, first-order hyperbolic
(K = 0) or parabolic (K > 0) equations with initial and final conditions specified. The
proof of the existence of solutions, given in section 4 for the nondissipative case K = 0
and in section 5 for the dissipative case K > 0, is in two stages and follows closely that
of [14]. First, suppose that (ω, θ) are given in a suitably defined function space E (ω,θ) and
suppose that (µ, λ) are given in a suitably defined function space E (µ,λ). By integrating along
characteristics in the nondissipative case, and by considering heat potentials in the dissipative
case, it is shown that the adjoint equations (2.9a)–(2.9d) define a map, M†, from E (µ,λ) to
itself, by (µ′, λ′) = M†(µ, λ), with

−µ′
t − u(ω) · ∇µ′ − K�µ′ = S(µ)(ω, θ, µ, λ) in BT (2.11)

and a similar expression for λ′, subject to the final conditions, µ′ = λ′ = 0 at t = T .
Since M† is continuous and since E (µ,λ) is compact and convex, the Schauder fixed-point
theorem, (e.g. [12, theorem 11.1]) implies there is a fixed point of M†, (µ∗, λ∗), for which
M†(µ∗, λ∗) = (µ∗, λ∗). The fixed point is a solution of (2.9a)–(2.9d) for given (ω, θ) in
E (ω,θ).

By a similar procedure, the forward equations (2.8a)–(2.8d), for the above (µ∗, λ∗) in
E (µ,λ), define a map M from E (ω,θ) to itself by (ω′, θ ′) = M(ω, θ). Again the Schauder fixed-
point theorem implies there is a fixed point satisfying M(ω∗, θ∗) = (ω∗, θ∗) that is a solution
of (2.8a)–(2.8d). The functions (ω∗, θ∗, µ∗, λ∗) then satisfy the coupled EL equations (2.8a)–
(2.8d) and (2.9a)–(2.9d) and comprise the desired solution. Further, by the construction of
the spaces E (ω,θ) and E (µ,λ), they have the required continuity and are strong solutions of the
EL equations.

3. Function spaces

For completeness, the main function spaces used throughout the remainder of this paper are
outlined here. Let Ck(D̄) and be the usual space of kth-order continuous functions on a domain
D, with associated norm |f |k;D̄ = max|α|�k supx∈D |Dαf |. Further, let Ck,l(D̄T ) be the space
of functions on DT = D × (0, T ) that are in both Ck(D̄) and Ck([0, T ]) and define the
associated norm by ‖f ‖k,l;D̄T

= max(|f |k;D̄, |f |l;[0,T ]).
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The function, f , is Hölder continuous with coefficient ν, denoted by f ∈ Cν(D̄), if

[f ]ν = sup
x,y∈D,x �=y

|x − y|−ν |f (x) − f (y)| < C. (3.1)

Then Ck+ν(D̄) denotes the subspace of Ck(D̄) consisting of functions whose spatial partial
derivatives Dαf of order |α| = k are Hölder continuous with coefficient ν. For anisotropic
Hölder continuity in space and time Ck+ν,l+δ(D̄T ) denotes the subset of Ck,l(D̄T ) consisting
of functions whose partial derivatives Dαf of order |α| = k are Hölder continuous with
coefficient ν, uniformly in time, and whose temporal partial derivatives ∂l

t f of order l are Hölder
continuous with coefficient δ, uniformly in space. The spaces Ck+ν(D̄) and Ck+ν,l+δ(D̄T ) are
Banach spaces when equipped with the following norms [1]:

|f |k+ν;D̄ = |f |k;D̄ + max
|α|=k

[Dαf ]ν (3.2)

‖f ‖k+ν,l+δ;D̄T
= ‖f ‖k,l;D̄T

+ max
|α|=k

[Dαf ]ν + [∂l
t f ]δ. (3.3)

Finally, the function g satisfies a parabolic Hölder condition if

[g]∗ν = sup
(x,t) �=(x ′,t ′)

((x − x ′) · (x − x ′) + |t − t ′|)− ν
2 |g(x, t) − g(x ′, t ′)| < C. (3.4)

Then Ck+ν, k+ν
2 (D̄T ) denotes the subspace of Ck,k/2(D̄T ) consisting of functions whose spatial

partial derivatives Dαu of order |α| = k and whose temporal partial derivatives of order k/2
satisfy a parabolic Hölder condition with coefficient ν. The space Ck+ν, k+ν

2 (D̄T ) is a Banach
space when equipped with the following norm [16]:

|||g|||k+ν;D̄T
= ‖g‖k,k/2;D̄T

+ max
|α|=k

[Dαg]∗ν + [∂k/2
t f ]∗ν . (3.5)

When the norms are applied to vector valued functions, the max of the norms of the scalar
components is taken. Throughout the following, generic constants will be denoted by c and
specific, but undetermined, constants by c1, c2, etc.

4. Existence of the generalized inverse to the nondissipative equations

In this section the existence of solutions to (2.8a)–(2.8d) and (2.9a)–(2.9d) is proved in
the special case K = 0. Under this assuption the forward and adjoint equations take a
hyperbolic form and are treated by integrating along characteristics, in this case equivalent
to the geostrophic particle paths. Since θ occurs in the equations in an identical form on the
lower and upper boundaries, attention will be restricted to the case where θ is nonzero only on
the lower boundary �̄0, without any loss of generality. In addition, the following are assumed
to hold throughout this section:

α, ρ ∈ C1+ν([0, h]), (4.1a)

Q ∈ C1+ν,0(B̄T ) × C1+ν,0(B̄T ), A ∈ C1+ν(B̄) × C1+ν(B̄), (4.1b)

Q̂ ∈ C2+ν,0(�̄T ) × C2+ν,0(�̄T ), Â ∈ C2+ν(�̄) × C2+ν(�̄), (4.1c)

Ki ∈ Cν,0(B̄T ) × Cν,0(B̄T ), (4.1d)

ωI ∈ C1+ν(B̄), θI ∈ C2+ν(�̄), (4.1e)

S0 ∈ C1+ν,0(B̄T ), H0 ∈ C2+ν,0(�̄T ), (4.1f)

and the constants q, a, q̂, â and KI ,KS, K̂I , K̂S are defined by

q = diam(B̄) sup
B̄T

‖Q(·, ·; x, t)‖1+ν,0;B̄T
, a = diam(B̄) sup

B̄

|A(·; x)|1+ν;B̄ , (4.2a)
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q̂ = diam(�̄) sup
�̄T

‖Q̂(·, ·; xH , t)‖2+ν,0;�̄T
, â = diam(�̄) sup

�̄

|Â(·; xH )|2+ν;�̄, (4.2b)

KI = |ωI |1+ν;B̄ , K̂I = |θI |2+ν;�̄, (4.2c)

KS = ‖S0‖1+ν,0;B̄T
, K̂S = ‖H0‖2+ν,0;�̄T

. (4.2d)

Since �̃ is strictly elliptic, modification of the standard results for Neumann boundary
conditions to mixed Neumann, doubly periodic boundary conditions, as discussed in [7],
implies that, for a given (ω, θ) ∈ C1+ν,0(B̄T ) × C2+ν,0(�̄T ) and for fixed t , (2.2a)–(2.2c) has
a unique solution u ∈ C2+ν(B̄) that satisfies the Schauder estimate

|u|2+ν;B̄ � c(|ω|1+ν;B̄ + |θ |2+ν;�̄). (4.3)

Further, by linearity of the Green function representation of ψ , it follows that u ∈ C2+ν,0(B̄T )

[7, equation 5.1ff], and, by taking suprema over t , the bound (4.3) can be extended to

‖u‖2+ν,0;B̄T
� c(‖ω‖1+ν,0;B̄T

+ ‖θ‖2+ν,0;�̄T
). (4.4)

Next define

E (µ,λ) = {(µ, λ) ∈ C1+ν,0(B̄T ) × C2+ν,0(�̄T )
⋂

C0,δ1(B̄T )

×C0,δ1(�̄T ) : ‖µ‖1+ν,0;B̄T
� Lµ and ‖λ‖2+ν,0;�̄T

� Lλ}, (4.5)

E (ω,θ) = {(ω, θ) ∈ C1+ν,0(B̄T ) × C2+ν,0(�̄T )
⋂

C0,δ2(B̄T )

×C0,δ2(�̄T ) : ‖ω‖1+ν,0;B̄T
� Lω and ‖θ‖2+ν,0;�̄T

� Lθ }, (4.6)

where Lµ, Lλ, Lω, Lθ are positive constants and 0 < δ1, δ2 < 1, and define P = Lµ + Lλ and
R = Lω + Lθ so that ω ∈ E (ω) ⇒ ‖u‖2+ν,0;B̄T

� cR, by (4.4). The velocity field u defines
particle paths XH = (X1, X2) = XH (xH , z, t, τ ) that are solutions to the following system
of ordinary differential equations:

dXH

dτ
= u(XH , z, τ ), (4.7)

with initial/final time conditions XH (xH , z, t, t) = xH . The solution XH to (4.7) describes
the path of the fluid particle that is at position (xH , z) at time τ = t .

Lemma 4.1. The particle paths, XH (xH , z, t, τ ), defined by (4.7) are unique and satisfy
XH (τ) ∈ C2+ν,1(B̄T ) for each τ ∈ [0, T ]. Further, the following bound holds for any
t, τ ∈ [0, T ] × [0, T ]:

|XH (t, τ )|2+ν;B̄ � ec1R|t−τ |. (4.8)

Proof. Continuity of XH follows from standard results in ordinary differential equations
(e.g. [15, theorem V3.1]) and the extension to Hölder continuity in space was described in [7].
(See also [7] for a discussion of the effect of double periodicity.) The bound (4.8) for arbitrary
s, t is obtained by a straightforward extension of the arguments used in [7] to obtain bounds
at τ = 0. In particular, (4.8) is obtained by integrating the identities, d

dτ DX = DuDX,
d

dτ D
2X = D2u(DX)2 + DuD2X, and a derived expression for d

dτ (D
2X′ − D2X′′), where

D and D2 denote first- and second-order spatial derivatives. �
For a given (ω, θ) ∈ E (ω,θ) the adjoint equations (2.9a)–(2.9d) define a map M† :

C1+ν,0(B̄T ) × C2+ν,0(�̄T ) → C1+ν,0(B̄T ) × C2+ν,0(�̄T ) by (µ′, λ′) = M†(µ, λ) where

−µ′
t − u(ω, θ) · ∇µ′ = S(µ)(ω, θ, µ, λ) in B̄T (4.9)

−λ′
t − u(ω, θ) · ∇λ′ = H(λ)(ω, θ, µ, λ) in �̄0

T . (4.10)
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The particle paths are then used to integrate the adjoint equations (4.9) and (4.10) backwards
in time from the final conditions, (µ′, λ′) = (0, 0) at time t = T . The formal solution is

µ′(x, t) = −
∫ T

t

dτS(µ)(XH (xH , z, t, τ ), z, τ ) (4.11)

λ′(xH , t) = −
∫ T

t

dτH (λ)(XH (xH , 0, t, τ ), 0, τ ). (4.12)

To ensure M† in fact maps E (µ,λ) to itself, continuity and bounds for the right-hand side of (4.9)
and (4.10) are required, and are provided in the following two results.

Lemma 4.2. Let (ω, θ) ∈ E (ω,θ) and (µ, λ) ∈ E (µ,λ). Then G = G(ω, θ, µ, λ) = G(∇⊥µ ·
∇ω + βµx,∇⊥λ · ∇θ) satisfies G ∈ C2+ν,0(B̄T ) and ‖G‖2+ν,0;B̄T

� c(Lµ(Lω + β) + LλLθ).

Proof. For ω ∈ C1+ν,0(B̄T ) and µ ∈ C1+ν,0(B̄T ) the product ∇⊥µ · ∇ω ∈ Cν,0(B̄T ). Also,
βµx ∈ Cν,0(B̄T ). Define f1 = ∇⊥µ · ∇ω + βµx . Then f1 ∈ Cν,0(B̄T ) and satisfies

‖f1‖ν,0;B̄T
� c(‖∇⊥µ‖ν,0;B̄T

‖∇ω‖ν,0;B̄T
+ ‖βµx‖ν,0;B̄T

) (4.13)

� c‖µ‖1+ν,0;B̄T
(‖ω‖1+ν,0;B̄T

+ β). (4.14)

Similarly, f2 = ∇⊥λ · ∇θ ∈ C1+ν,0(�̄T ) and satisfies

‖f2‖1+ν,0;�̄T
� c‖λ‖2+ν,0;�̄T

‖θ‖2+ν,0;�̄T
. (4.15)

Defineφ = G(f1, f2). Then, by arguments similar to those used to derive (4.4),φ ∈ C2+ν,0(B̄T )

and satisfies ‖φ‖2+ν,0;B̄T
� c(‖f1‖ν,0;B̄T

+ ‖f2‖1+ν,0;�̄T
). By the definitions of the subspaces

E (ω,θ) and E (µ,λ) this is the desired bound. �

Lemma 4.3. Let (ω, θ) ∈ E (ω,θ), let L be as defined in (2.4) and let Ki (·, ·,xi , ti) ∈ Cν,0(B̄T )

be any Hölder continuous function with support in a neighbourhood of each data location
(xi , ti). Define the constants B1 and B2 by

B1 = max
1�i,j�N

|Dij | max
1�i�N

‖Ki (·, ·,xi , ti)‖ν,0;B̄T
max

1�j�N
|dj | (4.16)

B2 = max
1�i,j�N

|Dij | max
1�i�N

‖Ki (·, ·,xi , ti)‖ν,0;B̄T
diam(B). (4.17)

Then L′(δBT
, 0)D[d − L(ω, θ)] ∈ C2+ν,0(B̄T ) and satisfies

‖L′(δBT
, 0)D[d − L(ω, θ)]‖2+ν,0;B̄T

� c(B1 + B2T R), (4.18)

where R = Lω + Lθ as before. Also L′(0, δ�T
)D[d − L(ω, θ)] ∈ C2+ν,0(�̄T ) and its norm

with respect to C2+ν,0(�̄T ) satisfies the same bound.

Proof. Consider L′
i (δBT

, 0) = L′
i (δBT

(x − x′, t − t ′), 0) with the definition (2.4) of L:

L′
i (δBT

, 0) =
∫
B̄ ′

T

Ki (x
′, t ′,xi , ti)

∫
B̄ ′′

g(x′,x′′)δBT
(x − x′′, t − t ′) (4.19)

=
∫
B̄ ′

Ki (x
′, t,xi , ti)g(x

′,x) (4.20)

= G(Ki (·, ·,xi , ti), 0) in B̄T , (4.21)

where the primes on the domains of integration indicate integration over the correspondingly
primed variable. Similarly,

L′
i (0, δ�T

) = G(Ki (·, ·,xi , ti), 0) on �̄0
T . (4.22)
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Thus, by the arguments similar to those used to derive (4.4), L′
i (δBT

, 0) ∈ C2+ν,0(B̄T ) and
L′

i (0, δ�T
) ∈ C2+ν,0(�̄T ), and satisfy the bound

‖L′
i (δBT

, 0)‖2+ν,0;B̄T
� c max

1�i�N
‖K(·, ·,xi , ti)‖ν,0;B̄T

, (4.23)

and the same bound for ‖L′
i (0, δ�T

)‖2+ν,0;�̄T
, whenever Ki (·, ·,xi , ti) ∈ Cν,0(B̄T ).

Also,

Li (ω, θ) =
∫
B̄T

Ki (x, t,xi , ti)G(ω, θ)(x, t), (4.24)

=
∫
B̄T

Ki (x, t,xi , ti)ψ(x, t), (4.25)

so that, by (4.3) and the hypothesis that (ω, θ) ∈ E (ω,θ),

|Li (ω, θ)| � cT diam(B) max
1�i�N

‖K(·, ·,xi , ti)‖ν,0;B̄T
(Lω + Lθ). (4.26)

Using

‖L′(δBT
, 0)D[d − L(ω, θ)]‖2+ν,0;B̄T

� N2 max
1�i,j�N

|Dij |‖L′
i (δBT

, 0)‖2+ν,0;B̄T
|d − L(ω, θ)|, (4.27)

and a similar expression for ‖L′(0, δ�T
)D[d − L(ω, θ)]‖2+ν,0;�̄T

, and substituting (4.23)
and (4.26), the desired bounds follow. The continuity follows immediately from the continuity
of L′

i (δBT
, 0) and L′

i (0, δ�T
). �

Lemmas 4.2 and 4.3 together ensure the continuity and boundedness of S(µ) and H(λ).
Having established these it is now possible to show that, under suitable conditions, M† maps
E (µ,λ) into E (µ,λ).

Lemma 4.4. Given (ω, θ) ∈ E (ω,θ) and (µ, λ) ∈ E (µ,λ), M† maps E (µ,λ) into E (µ,λ) provided
the following hold:

T <
1

c1R
log

(
c1R

2(R + β)
+ 1

)
, (4.28)

Lµ,Lλ � (B1 + B2T R)(ec1RT − 1)

c1R − 2(R + β)(ec1RT − 1)
. (4.29)

Proof. The C1+ν,0(B̄T ) × C2+ν,0(�̄T ) continuity of (µ′, λ′) follows from the continuity of
the right-hand sides of (4.11) and (4.12). Bounds on ‖µ′‖1+ν,0;B̄T

and ‖λ′‖2+ν,0;�̄T
follow

from (4.11) and (4.12) together with lemmas 4.1–4.3, the chain rule, and the bound (4.8) for
‖XH‖2+ν,0;B̄T

. In particular, (4.11) with the chain rule gives the bound

|µ′(t)|1+ν;B̄ � ‖S(µ)‖1+ν,0;B̄T

∫ T

t

dτ |XH (t, τ )|1+ν;B̄ , (4.30)

which gives, on substituting (4.8), integrating, and taking the supremum over t

‖µ′‖1+ν,0;B̄T
� 1

c1R
(ec1RT − 1)‖S(µ)‖1+ν,0;B̄T

. (4.31)

The bounds given by lemmas 4.2 and 4.3 then give

‖µ′‖1+ν,0;B̄T
� 1

c1R
(ec1RT − 1)(Lµ(Lω + β) + LλLθ + B1 + cT B2R). (4.32)
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A similar procedure establishes the same bound for ‖λ′‖2+ν,0;�̄T
. Combining the two

bounds and rearranging shows that ‖µ′‖1+ν,0;B̄T
� Lµ and ‖λ′‖2+ν,0;�̄T

� Lλ provided the
conditions (4.28) and (4.29) are satisfied†. The Hölder continuity in time of (µ′, λ′) follows
from (4.11) and (4.12) and from the Hölder continuity in space and time of XH by an argument
similar to that described in [14]. �

The existence of a solution (µ∗, λ∗) to the adjoint equations (2.9a)–(2.9d) now follows
by virtue of the existence of a fixed point of the map M†.

Lemma 4.5. Suppose (ω, θ) ∈ E (ω,θ) is given and that the conditions of lemma 4.4 are
satisfied. Then there exists a solution (µ∗, θ∗) of (2.9a)–(2.9d) with (µ∗, θ∗) ∈ E (µ,λ) and
with (µ∗, λ∗) ∈ C1([0, T ]).

Proof. First note that, since any linear combination of functions in E (µ,λ) is also in E (µ,λ),
E (µ,λ) is a nonempty and convex subset of C1+ν,0(B̄T )×C2+ν,0(�̄T )

⋂
C0,δ1(B̄T )×C0,δ1(�̄T ).

Further, since E (µ,λ) consists of uniformly bounded functions that satisfy a uniform Hölder
condition in both space and time as well as a uniform Hölder condition in space on their
first spatial derivatives, these functions are equicontinuous in B̄T × �̄T . Therefore, by the
Ascoli–Arzela theorem (e.g. [1, theorem 1.30]), E (µ,λ) is precompact and hence compact in
C0(B̄T ) × C0(�̄T ). Finally, M† is linear from E (µ,λ) into E (µ,λ) and hence continuous in
C0(B̄T ) × C0(�̄T ). The result is then proved by applying Schauder’s fixed-point theorem
(e.g. [12]) to M† : E (µ,λ) → E (µ,λ), which implies a fixed point of M† satisfying M†µ∗ = µ∗.
By the definition (4.11), (4.12) of M†, (µ∗, λ∗) is the required solution of (2.9a)–(2.9d).
Finally, consideration of (4.9) and (4.10) shows that µ∗

t and λ∗
t are both C0([0, T ]) since all

other terms are C0([0, T ]). �

The existence of a solution to the forward equations, (2.8a)–(2.8d), follows by similar
arguments to those of the adjoint equations. For the solution (µ∗, λ∗) ∈ E (µ,λ) given above,
(2.8a)–(2.8d) defines a map M : C1+ν,0(B̄T ) × C2+ν,0(�̄T ) → C1+ν,0(B̄T ) × C2+ν,0(�̄T ) by
(ω′, θ ′) = M(ω, θ) where

ω′
t + u(ω, θ) · ∇ω′ = S(ω)(v(ω, θ), µ∗, λ∗) in B̄T (4.33)

θ ′
t + u(ω, θ) · ∇θ ′ = H(θ)(µ∗, λ∗) in �̄0

T , (4.34)

with the initial conditions, ω′ = ω̃I , θ ′ = θ̃ I at t = 0 and where ω̃I , θ̃ I , S(ω), H(θ) are given
by (2.10a), (2.10b). This time, the particle paths are used to integrate the equations (4.33) and
(4.34) forwards in time, the formal solution being

ω′(x, t) = ωI (XH (xH , z, 0, t), z) +
∫ t

0
dτS(ω)(XH (xH , z, t, τ ), z, τ ) (4.35)

θ ′(xH , t) = θI
0 (XH (xH , 0, 0, t)) +

∫ t

0
dτH (θ)(XH (xH , 0, t, τ ), 0, τ ). (4.36)

As before, under suitable conditions, M maps E (ω,θ) into E (ω,θ):

† Note that in [14] the chain rule was never used in the derivation of the bounds on the adjoint variable or on the
forward variable [14, equations (4.31) and (4.51)], and consequently no account was taken of the boundedness of the
particle paths. Although the proof in [14] remains valid when this omission is corrected, the maximal time interval
over which the proof is valid (obtained from [14, equation 4.55]) must be revised downward.
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Lemma 4.6. If the conditions of lemma 4.4 are satisfied thenM maps E (ω,θ) into E (ω,θ) provided
the following hold:

Lω − KI ec1RT � (B1 + B2T R)(ec1RT − 1)

c1R − 2(R + β)(ec1RT − 1)

(
aec1RT +

qT 2

c1R
(ec1RT − 1)

)

+

(
β +

TKS

c1R

)
(ec1RT − 1) (4.37)

and

Lθ − K̂I ec1RT � (B1 + B2T R)(ec1RT − 1)

c1R − 2(R + β)(ec1RT − 1)

(
âec1RT +

q̂T 2

c1R
(ec1RT − 1)

)

+
T K̂S

c1R
(ec1RT − 1). (4.38)

Further, for any given KI , K̂I , KS and K̂S there exist values of T , Lω and Lθ that satisfy (4.37)
and (4.38).

Proof. Recall that S(ω) and H(θ) are given by (2.10a) and (2.10b). Continuity of the terms
on the right-hand sides of (4.35) and (4.36) follows immediately from the assumptions on
the initial conditions and forcing terms given in (4.1e) and (4.1f ), from the assumptions
on the covariance kernels (4.1b) and (4.1c), and from the continuity of the particle paths
XH (xH , z, τ, t) given in lemma 4.1. Bounds on terms involving the initial conditions and
forcing terms are written using (4.8) and the definitions (4.2c) and (4.2d), and bounds on the
terms involving the covariance kernels are written using (4.8) and straightforward expressions
of the form ‖∫

B̄T
Qµ∗‖1+ν,0;B̄T

� qT ‖µ∗‖0;B̄T
, etc, using the definitions (4.2a) and (4.2b). As

in lemma 4.4, the chain rule must be used. Note that the term involving βv in S(ω) in (4.35)
can be integrated directly to β(y−X2(xH , z, t, 0)). Collecting all the terms, (4.35) and (4.36)
finally yield

‖ω′‖1+ν,0;B̄T
� KI ec1RT +

(
β +

TKS

c1R

)
(ec1RT − 1) +

(
aec1RT +

qT 2

c1R
(ec1RT − 1)

)
Lµ

(4.39)

‖θ ′‖2+ν,0;�̄T
� K̂I ec1RT +

T K̂S

c1R
(ec1RT − 1) +

(
âec1RT +

q̂T 2

c1R
(ec1RT − 1)

)
Lλ, (4.40)

where (‖µ∗‖0;B̄T
, ‖λ∗‖0;�̄T

) � (Lµ, Lλ) has also been used. As in lemma 4.4, combining the
two bounds and rearranging shows that ‖ω′‖1+ν,0;B̄T

� Lω and ‖θ ′‖2+ν,0;�̄T
� Lθ provided the

conditions (4.37) and (4.38) are satisfied. The Hölder continuity in time of (ω′, θ ′) follows
from (4.35) and (4.36) and from the Hölder continuity in space and time of XH . Thus
(ω′, θ ′) ∈ E (ω,θ) provided (4.37) and (4.38) are satisfied. Finally, since the right-hand side
terms of (4.37) and (4.38) are increasing functions of both T and R = Lω + Lθ that are
identically zero when T = 0, that is they reduce to Lω � KI , Lθ � K̂I when T = 0, it
follows that there exists Lω,Lθ , T > 0 that satisfy (4.37) and (4.38) with KI < Lω < ∞,
K̂I < Lθ < ∞, and 0 < T < 1

c1R
log( c1R

2(R+β) + 1). �

Lemma 4.7. The map M from E (ω,θ) to itself, defined in (4.35) and (4.36) by M(ω, θ) =
(ω′, θ ′), is continuous in the C0 norm.

Proof. Let (ω, θ), (ωn, θn) ∈ C1+ν,0(B̄T ) × C2+ν,0(�̄T ) be such that (ωn, θn) → (ω, θ) in the
C1+ν,0(B̄T ) × C2+ν,0(�̄T ) norm, and define (ω′

n, θ
′
n) = M(ωn, θn) for each n. Define ψ and
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ψn to be the streamfunctions corresponding to (ω, θ) and (ωn, θn). Then by the linearity of
the boundary value problem, (2.2a)–(2.2c), and the arguments used to establish (4.4),

‖ψn − ψ‖2+ν,0;B̄T
� c(‖ωn − ω‖ν,0;B̄T

+ ‖θn − θ‖1+ν,0;�̄T
). (4.41)

Thus, ψn → ψ inC2+ν,0(B̄T ), and so the corresponding velocities, un → u inC1+ν,0(B̄T ), and
the corresponding streamlines, XHn

→ XH inC1(B̄T ×[0, T ]) [15, theorem V3.1]. Therefore,
by the continuity of (µ∗, θ∗), (4.35) and (4.36) imply (ω′

n, θ
′
n) → (ω′, θ ′) in C0(B̄T ). �

Theorem 4.1. Under the assumptions (4.1a)–(4.1f ) there is a time interval [0, T ∗] with
0 < T ∗ < 1

c1RI log( c1R
I

2(RI +β) + 1), where RI = KI + K̂I , such that there exists a strong solution

(ω∗, θ∗, µ∗, λ∗) to (2.8a)–(2.8d) and (2.9a)–(2.9d) defined on the domain B̄ × [0, T ∗], with
(ω∗, θ∗) ∈ E (ω,θ)(T ∗) and (µ∗, λ∗) ∈ E (µ,λ)(T ∗) and with both (ω∗, θ∗) and (µ∗, λ∗) ∈
C1([0, T ∗])

Proof. Let T ∗(KI , K̂I ,KS, K̂S) be the maximal T for which Lω,Lθ can be found that
satisfy (4.37) and (4.38), and which also satisfies (4.28) for such Lω,Lθ . As in lemma 4.5
E (ω,θ) is a nonempty, convex, and compact subset of C1+ν,0(B̄T )×C2+ν,0(�̄T )

⋂
C0,δ1(B̄T )×

C0,δ1(�̄T ). By lemma 4.7, M is continuous in C0(B̄T )×C0(�̄T ). Again applying Schauder’s
fixed-point theorem to M : E (ω,θ) → E (ω,θ) implies there is a fixed point (ω∗, θ∗) of M ,
satisfying M(ω∗, θ∗) = (ω∗, θ∗). Lemma 4.5 implies the existence and time regularity of the
corresponding adjoint solution (µ∗, λ∗) ∈ E1. By the definition (4.35) and (4.36) of M and
the definition (4.11) and (4.12) of L, (ω∗, θ∗, µ∗, λ∗) is the required solution of (2.8a)–(2.8d)
and (2.9a)–(2.9d). Finally, consideration of (4.33) and (4.34) shows that ω∗

t and θ∗
t are both

C0([0, T ∗]) since all other terms are C0([0, T ∗]). �

5. Existence of the generalized inverse to the dissipative equations

5.1. Restriction to β = 0, θ = 0

In this section the existence of solutions to (2.8a)–(2.8d) and (2.9a)–(2.9d) is proved for
K > 0 under the simplifying assumptions that θ ≡ 0 on �̄X, X = 0, h ∀t ∈ [0, T ] (SQGD)
and that β = 0 (the f -plane). These assumptions are made for the sake of clarity; section 5.2
contains details of how the proof is extended when they are relaxed. Extensive use is made
of the results of section 4 and of results from [4, 16]. Because of the different structure of
the evolution equations when K > 0 (parabolic compared with hyperbolic) slightly different
function spaces and assumptions are needed from those in section 4.

LetCk+ν(D̄) and |·|k+ν;D̄ be the kth-order Hölder space and associated norm on a domainD

and let Ck+ν, k+ν
2 (D̄T ) and |||·|||k+ν;D̄T

be the kth-order parabolic Hölder space and associated norm
on DT = D × (0, T ), as defined in section 3. At times in this section, continuity in z will be
treated separately from that in�z

T , using the inequality |||·|||ν;B̄T
� sup[0,h] |||·|||ν;�̄z

T
+sup�T

|·|ν;[0,h].
The following assumptions are made throughout:

α, ρ ∈ C1+ν([0, h]), (5.1a)

Q,Ki ∈ Cν, ν2 (B̄T ) × Cν, ν2 (B̄T ), A ∈ C2+ν(B̄) × C2+ν(B̄), (5.1b)

ωI ,∇ωI ,�ωI ∈ Cν(B̄), S0 ∈ Cν, ν2 (B̄T ), (5.1c)

and the constants q, a and KI ,KS are defined by

q = diam(B̄) sup
B̄T

|||Q(·, ·; x, t)|||ν;B̄T
, a = diam(B̄) sup

B̄

|A(·; x)|ν;B̄ , (5.2a)

KI = |ωI |ν;B̄ + |∇ωI |ν;B̄ + |�ωI |ν;B̄ , KS = |||S0|||ν;B̄T
. (5.2b)
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For a given ω ∈ Cν(B̄), (2.2a)–(2.2c) with θ ≡ 0 has a unique solution u ∈ C1+ν(B̄) that
satisfies the Schauder estimate [12]:

|u|1+ν;B̄ � c|ω|ν;B̄ . (5.3)

As before, for a givenω ∈ Cν, ν2 (B̄T ), it follows by linearity of the Green function representation
of ψ that u ∈ C1+ν, 1+ν

2 (B̄T ) and (5.3) can be extended to

|||u|||1+ν;B̄T
� c|||ω|||ν;B̄T

. (5.4)

Define

E (µ) = {µ ∈ C2+ν, 2+ν
2 (�̄z

T ) : |||µ|||2+ν;�̄z
T

� L
µ

H ,∀z ∈ [0, h],

with µ,∇µ ∈ Cν([0, h])

and |µ|ν;[0,h], |∇µ|ν;[0,h] � L
µ

(z),∀(xH , t) ∈ �̄T }, (5.5)

E (ω) = {ω ∈ C2+ν, 2+ν
2 (�̄z

T ) : |||ω|||2+ν;�̄z
T

� Lω
H ,∀z ∈ [0, h],

with ω,∇ω ∈ Cν([0, h])

and |ω|ν;[0,h], |∇ω|ν;[0,h] � Lω
(z),∀(xH , t) ∈ �̄T }, (5.6)

where L
µ

H , Lµ

(z), L
ω
H , Lω

(z) are positive constants. Define Lµ = L
µ

H + L
µ

(z) and Lω = Lω
H + Lω

(z)

so that ω ∈ E (ω) ⇒ |||u|||1+ν;B̄T
� cLω = U , by (5.4). Then, following [4], for a given

ω ∈ E (ω), and treating z as a parameter, (2.9a) and (2.9b) define a map M† : C2+ν, 2+ν
2 (�̄z

T ) →
C2+ν, 2+ν

2 (�̄z
T ) by µ′ = M†µ with

µ′(xH , z, t) =
∫ T

t

dτ
∫
�̄z

T

dx′
HB

†
U(xH ,x′

H , z, t, τ )S(µ)(x′
H , z, τ ), (5.7)

where S(µ) is given by (2.10c) and where B
†
U is the heat potential for the linear parabolic

equation

−µ′
t − u(ω) · ∇µ′ − K�µ′ = S(µ)(ω, µ) in �z

T . (5.8)

Lemma 5.1. Given ω ∈ E (ω), M† maps E (µ) into E (µ) provided the following hold:

c2L
ω < 1, (5.9)

Lµ � c2
B1 + B2T Lω

1 − c2Lω
, (5.10)

where c2 = c2(T , U,K) is a constant depending on T , U and K such that c2 is continuous
and increasing in T with c2(0, U,K) = 0. B1 and B2 are constants depending on the data
parameters, N , Dij and measurement functional, L, as described in lemma 4.3.

Proof. If ω ∈ E (ω) and µ ∈ E (µ) then by a simple extension of lemmas 4.2 and 4.3 (as
for (5.4) above) S(µ) ∈ C2+ν, 2+ν

2 (B̄T ) and |||S(µ)|||2+ν;B̄T
� cLµLω + B1 + B2T Lω. Also,

ω ∈ E (ω) ⇒ |||u|||1+ν;B̄T
� U . Then by standard results from the theory of linear parabolic

equations, µ′ ∈ C2+ν, 2+ν
2 (�̄z

T ) and satisfies the following a priori estimate

|||µ′|||2+ν;�̄z
T

� c2(T , U,K)|||S(µ)|||ν;�̄z
T
, (5.11)

for every z ∈ (0, h), where c2 has the form c2 = α1T
ν
2 +α2T

1+ν
2 +α3T ( [16, Ch 4 section 14]).

Thus |||µ′|||2+ν;�̄z
T

� L
µ

H provided c2(L
µLω+B1+B2T Lω) � L

µ

H . Following [4, equation 5.29ff]
and writing δµ′ = µ′(z2) − µ′(z1) and similarly for δu, etc, δµ′ satisfies

−δµ′
t − u|z2 · ∇δµ′ − K�δµ′ = δS(µ) − δu · ∇µ′|z1 in �

z2
T , (5.12)
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with δµ′ = 0 at t = T . Thus δµ′ ∈ C2+ν, 2+ν
2 (�̄

z2
T ) and |||δµ′|||2+ν;�̄z2

T
�

c2(|||δS(µ) + δu · ∇µ′|||ν;�̄z2
T
). Dividing by |z2 − z1|ν and taking suprema over [0, h] gives

|µ′|ν;[0,h], |∇µ′|ν;[0,h], |�µ′|ν;[0,h] � c2(|||S(µ)|||ν;B̄T
+ |||u|||ν;B̄T

sup
z∈[0,h]

|||∇µ′|||ν;�̄z
T
), (5.13)

and, using (5.11) and the bound on |||S(µ)|||ν;B̄T
, it follows that |µ′|ν;[0,h], |∇µ′|ν;[0,h] � L

µ

(z)

provided c2(L
µLω + B1 + B2T Lω) � L

µ

(z). Combining the conditions for L
µ

H and L
µ

(z) and
rescaling c2 gives µ′ ∈ E (µ), provided (5.10) holds. �

Lemma 5.2. Suppose ω ∈ E (ω) is given and that the conditions of lemma 5.1 are satisfied.
Then there exists a solution µ∗ of (2.9a), (2.9b) with µ∗ ∈ E (µ).

Proof. First note that E (µ) is a nonempty and convex subset of C2+ν, 2+ν
2 (�̄z

T ) ∩ Cν([0, h]).
Further, since E (µ) contains functions that satisfy a Hölder condition in all variables, and hence
are equicontinuous in BT , the Ascoli–Arzela theorem (e.g. [1]) implies that E (µ) is compact.
Finally, M† is linear from E (µ) into E (µ) and hence continuous in C0(B̄T ). The result is proved
by applying Schauder’s fixed-point theorem to M† : E (µ) → E (µ), which implies a fixed point
M†µ∗ = µ∗. �

For this µ∗, define a map M : C2+ν, 2+ν
2 (�̄z

T ) → C2+ν, 2+ν
2 (�̄z

T ) by ω′ = Mω with

ω′(xH , z, t) =
∫
�̄z

T

dx′
HBU(xH ,x′

H , z, t, 0)ω̃I (x′
H )

+
∫ t

0
dτ

∫
�̄z

T

dx′
HBU(xH ,x′

H , z, t, τ )S(ω)(x′
H , z, τ ), (5.14)

where ω̃I and S(ω) are given by (2.10a) (with β = 0) and where BU is the heat potential for
the linear parabolic equation

ω′
t + u(ω) · ∇ω′ − K�ω′ = S(ω)(µ∗) in �z

T . (5.15)

Lemma 5.3. If the conditions of lemma 5.1 are satisfied then M maps E (ω) into E (ω) provided
the following hold:

Lω − KI � ((c2 + 1)a + c2qT )c2
B1 + B2T Lω

1 − c2Lω
+ c2(L

ω)2 + c2K
S + c2K

I , (5.16)

where c2 = c2(T , U,K) is as in lemma 5.1. Further, for any given KI and KS there exist
values of T and Lω that satisfy (5.16).

Proof. If µ ∈ C0(B̄T ) and A, Q satisfy (5.1b) then
∫
B̄T

Qµ ∈ Cν, ν2 (B̄T ) with |||∫
B̄T

Qµ|||ν;B̄T
�

qT |||µ|||ν;B̄T
and

∫
B̄
Aµ ∈ C2+ν(B̄) with |∫

B̄
Aµ|2+ν;B̄ � a|µ|2+ν;B̄ . Following the proof of

lemma 5.1, ω′ ∈ C2+ν, 2+ν
2 (�̄z

T ) with

|||ω′|||2+ν;�̄z
T

� c2(qT |||µ∗|||ν;B̄T
+ |||S0|||ν;�̄z

T
) + (c2 + 1)(a|µ∗|2+ν;B̄ + |ωI |2+ν;�̄) (5.17)

� ((c2 + 1)a + c2qT )Lµ + c2K
S + (c2 + 1)KI , (5.18)

and so |||ω′|||2+ν;�̄z
T

� Lω
H provided Lω

H � ((c2 + 1)a + c2qT )Lµ + c2K
S + (c2 + 1)KI . Also,

δω′
t + u|z2 · ∇δω′ − K�δω′ = δS(ω) − δu · ∇ω′|z1 in �

z2
T . (5.19)

with δω′ = δω̃I at t = 0, which gives

|ω′|ν;[0,h], |∇ω′|ν;[0,h], |�ω′|ν;[0,h] � c2(qT Lµ + KS + (Lω)2) + (c2 + 1)(aLµ + KI),

(5.20)
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and so |ω′|ν;[0,h], |∇ω′|ν;[0,h] � Lω
(z), provided Lω

(z) � ((c2 + 1)a + c2qT )Lµ + (Lω)2)+ c2K
S +

(c2 +1)KI . Combining the above givesω′ ∈ E (ω) provided (5.16) holds. Finally, the right-hand
side of (5.16) is zero for T = 0 and is positive and continuously increasing in T for T > 0.
Thus there exists a T > 0 such that c2L

ω < 1, and anLω withLω > KI that satisfies (5.16). �

Theorem 5.1. Under the assumptions (5.1a)–(5.1c), and with θ ≡ 0, there exists a T > 0
satisfying c2(T )KI < 1 such that there exists a strong (classical) solution ω∗ ∈ E (ω)(T )

of (2.8a)–(2.8d) and (2.9a)–(2.9d), where c2 has the form c2 = α1T
ν
2 + α2T

1+ν
2 + α3T .

Proof. As in the proof of lemma 5.2, E (ω) is a nonempty, convex, and compact subset of
C2+ν, 2+ν

2 (�̄z
T ) ∩ Cν([0, h]). Also, by arguments similar to those used in lemma 4.7, M is

continuous in C0(B̄T ) (see also [4]). Again applying Schauder’s fixed point theorem to
M : E (ω) → E (ω) implies a fixed point Mω∗ = ω∗. The fixed point is a strong solution
of (2.8a)–(2.8d) and (2.9a)–(2.9d) by the construction of E (ω). �

5.2. Extension to β �= 0, θ �= 0

First consider the case β �= 0, θ ≡ 0. The following modifications must be made to
the analysis of section 2. In lemma 5.1 the bound on |||S(µ)|||ν;B̄T

becomes |||S(µ)|||ν;B̄T
�

Lµ(Lω + β) + B1 + B2T Lω, so that the conditions (5.9)–(5.10) become

c2(L
ω + β) < 1, (5.21)

Lµ � c2
B1 + B2T Lω

1 − c2(Lω + β)
. (5.22)

Also, in lemma 5.3, the term βv must be retained in S(ω), which modifies the bounds on
|||ω′|||2+ν;�̄z

T
, |ω′|ν;[0,h], |∇ω′|ν;[0,h], |�ω′|ν;[0,h] to give the condition

Lω − KI � ((c2 + 1)a + c2qT )c2
B1 + B2T Lω

1 − c2(Lω + β)
+ c2(L

ω + β)Lω + c2K
S + c2K

I ,

(5.23)

in place of (5.16). The remainder of the proof carries over with obvious minor modifications.
Now consider the case θ �= 0, and for simplicity, and without loss of generality, assume

that θ �= 0 only on �0 and that θ ≡ 0 on �h. The Schauder estimate (5.4) for |||u|||1+ν;B̄T

becomes [4]

|||u|||1+ν;B̄T
� c(|||ω|||ν;B̄T

+ |||θ |||1+ν;�̄0
T
). (5.24)

To apply the Schauder fixed-point theorem, it is necessary to construct the following additional
function spaces:

E (λ) = {λ ∈ C2+ν, 2+ν
2 (�̄z

T ) : |||λ|||2+ν;�̄0
T

� Lλ}, (5.25)

E (θ) = {θ ∈ C2+ν, 2+ν
2 (�̄z

T ) : |||θ |||2+ν;�̄0
T

� Lθ }, (5.26)

and to define maps N,N† : C2+ν, 2+ν
2 (�̄0

T ) → C2+ν, 2+ν
2 (�̄0

T ) by λ′ = N†λ, θ ′ = Nθ similarly
as for M and M†. The procedure is then similar to that in section 5.1 (and cf also section 4).
In addition to (5.1b) and (5.1c) the following assumptions are needed:

Q̂ ∈ Cν, ν2 (�̄z
T ) × Cν, ν2 (�̄z

T ), Â ∈ C2+ν(�̄) × C2+ν(�̄) (5.27a)

θI ∈ C2+ν(�̄0), H0 ∈ Cν, ν2 (�̄0
T ). (5.27b)
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First, conditions onLµ andLλ are found that guaranteeM† : E (µ) → E (µ) andN† : E (λ) → E (λ)

simultaneously, noting that now |||S(µ)|||ν;B̄T
is bounded by c(Lµ(Lω +β)+LλLθ)+B1 +B2T Lω

and that additionally |||H(λ)|||ν;�̄0
T

is bounded by the same expression (cf section 4). Second,
conditions on Lω and Lθ are found that guarantee M : E (ω) → E (ω) and N : E (θ) → E (θ)

simultaneously, again noting the relevant additions to the bounds on the |||S(ω)|||ν;B̄T
and

|||H(θ)|||ν;�̄0
T
. Defining K̂I = |θI |2+ν;�̄0 and K̂S = |||H0|||ν;�̄0

T
, the above can be summarized

in the following:

Theorem 5.2. Under the assumptions (5.1a)–(5.1c) and (5.27a)–(5.27b), there exists a T > 0
satisfying c3(T )(KI + K̂I + β)L < 1 such that there exists a strong (classical) solution
ω∗ ∈ E (ω)(T ), θ∗ ∈ E (θ)(T ) of (2.8a)–(2.8d) and (2.9a)–(2.9d), where c3 has the form
c3 = α1T

ν
2 + α2T

1+ν
2 + α3T .

6. Remarks

Theorems 4.1 and 5.2 establish the existence of a strong solution to the EL equations for
the generalized inverse of the nondissipative and dissipative quasi-geostrophic equations.
Existence is guaranteed in the time interval [0, T ∗], where T ∗ < T decreases as the norms
of the initial distributions of vorticity and temperature increase. Since T ∗ does not appear in
any of the bounds used in establishing the proof, the problem may be recast on the interval
[0, T ∗]. Note that, even if the linear Schauder estimates of (5.4) and (5.24) are improved to
logarithmic estimates of the form given in [2, equation (18)], the restriction of the time interval
would remain. In the present case the main restriction arises from the coupled nonlinearity
in the adjoint equations and not from the estimates of the norms of the particle paths (in
the nondissipative case) or heat potentials (in the dissipative case). Of course, although the
condition on T ∗ guarantees existence of a solution to the EL equations, such a solution is not
necessarily a global minimizer of the penalty functional J defined in (2.6). Because J is
nonconvex, multiple extrema may exist. This property is reflected in the fact that there is no
uniqueness result for the EL equations.

It is tempting to compare the time intervals over which the existence proofs are valid
between the dissipative and nondissipative cases, for example by calculating the maximal T
for which (4.37) and (5.16) can be satisfied. Unfortunately such direct comparison provides
no insight because of the dependence of the maximal T on K in the dissipative case, namely
T ∗ ∼ O(K), which arises from the dependence of c2 on K in (5.11) [4]. Thus in the limit
of K → 0, theorem 5.1 ceases to be valid at all. The reason for the discrepancy is that the
dissipative equations are a higher-order system, and thus the strong solutions must have an extra
order of differentiability than those of the nondissipative equations. In [5] it was speculated
that in the limit of vanishing K the solutions to the dissipative equations remain at least weak
solutions to the nondissipative equations.

As in [7], various extensions of the present result are possible. In particular, the advection
equations for potential temperature on the upper or lower boundaries can be changed to allow
for both topography and for radiation of energy out of the domain. In each case additional
terms appear in both the forward and adjoint equations (2.8c) and (2.9c) for the variables θ

and λ. The proof remains valid in both cases, with minor modifications: in the nondissipative
case with variable topography, for example, the function specifying the topography must be
C2+ν(�̄).

The existence results established here provide some justification for the numerical
approximation of solutions by, say, iterative proceedures (e.g. [8,13]). However, as illustrated
in [13], different iterative proceedures approximating the same problem can provide solutions
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with very different convergence properties. Thus individual existence/convergence results for
individual iterative schemes are still required.
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