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A possible route to finite-time singularity in the quasigeostrophic system, via a cascade
of filament instabilities of geometrically decreasing spatial and temporal scales, is
investigated numerically using a high-resolution hybrid contour dynamical algorithm.
A number of initial temperature distributions are considered, of varying degrees of
continuity. In all cases, primary, secondary, and tertiary instabilities are apparent before
the algorithm loses accuracy due to limitations of finite resolution. Filament instability
is also shown to be potentially important in the closing saddle scenario investigated
in many previous studies. The results do not provide a rigorous demonstration of
finite-time singularity, but suggest avenues for further investigation.
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1. Introduction
The quasigeostrophic model is a leading-order approximation to the large-scale,

low-frequency dynamics of the rotating, stratified flows of planetary atmospheres and
oceans. In the presence of a horizontal boundary, such as the ground or ocean surface,
it has long been recognized that the dominant motions are described by the dynamics
at the surface itself, with interior dynamics playing a secondary role (Hoskins &
Bretherton 1972; Blumen 1978). The same holds true at the rapid jump in static
stability at the tropopause (Juckes 1994). In these cases the governing equations reduce
to a single advection equation for the surface (potential) temperature θ , or surface
buoyancy in the case of ocean dynamics:

∂tθ + J(ψ, θ)= 0, ∇2ψ = 0, θ = ψz, (1.1)

where ψ is the horizontal streamfunction (u = (−ψy, ψx, 0)), J is the Jacobian
determinant, and ∇2 is the three-dimensional Laplacian; the vertical coordinate has
been rescaled by Prandtl’s ratio, f /N, where f is the Coriolis parameter and N is the
buoyancy frequency. The equations are often recast in purely two-dimensional form:

∂tθ + J(ψ, θ)= 0, − (−∆)1/2 ψ = θ, (1.2)

where ∆ is the two-dimensional Laplacian and the operator (−∆)1/2 is most naturally
defined in terms of the Fourier-transformed relation θ̂ =−|k|ψ̂ .
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Wider interest in the system (1.2) has arisen out of its similarity with the
three-dimensional Euler equations. Taking the horizontal gradient of (1.2) yields
an evolution equation for ∇θ that bears strong similarity to the three-dimensional
vorticity equation, in particular with regard to the structure of the stretching term
∇θ · ∇u (e.g. Constantin, Majda & Tabak 1994; Constantin 1995; Tran, Dritschel &
Scott 2010). The similarity has motivated the investigation of the possible finite-time
development of singularities from smooth initial conditions. Early numerical studies
focusing on a closing saddle geometry suggested the possibility of singularity in finite
time (e.g. Constantin et al. 1994), which was, however, later ruled out by higher-
resolution studies, suggesting instead a double exponential growth ∇θ ∝ exp exp t
(Ohkitani & Yamada 1997; Constantin, Nie & Schorghofer 1998). The later results
were further supported by theoretical analysis, which showed, in particular, that if
the closing saddle retains its simple form then no finite-time singularity is possible
(Cordoba 1998).

Another possible route to singularity in the quasigeostrophic model was suggested
by Hoyer & Sadourny (1982), involving the local transfer of enstrophy 〈θ 2〉 to small
scales through local instabilities. As argued by Pierrehumbert, Held & Swanson (1994)
on dimensional grounds, since the growth rate of instabilities of small filaments of
width d scales like σ ∼ θ0/d, and since filaments are produced by ambient strain,
which itself scales like σ , the evolution of d may be modelled by ḋ ∼ −σd ∼ −θ0.
Hence, d is linearly decreasing and filaments reach zero width in finite time. This local
cascade is consistent with an early numerical simulation of Held et al. (1995) in which
the roll-up of a straight filament generates a new filament, which in turn becomes
unstable.

The purpose of this paper is to investigate the cascade through repeated filament
instability and to consider (as far as possible with limited numerical resolution) the
extent to which a self-similar cascade is achieved. If the repeated instabilities follow
a self-similar pattern then, as discussed in § 2 below, the development of a singularity
in finite time appears inevitable. Establishing self-similarity is well beyond current
computational limits. However, examining repeated instabilities for various initial
filament profiles, as reported in §§ 3.1–3.3 below, provides some limited evidence
that such a route to singularity may exist. We stress therefore that the results obtained
so far are inconclusive but suggest that further investigation into this scenario is
warranted.

Although the closing saddle scenario originally put forward by Constantin et al.
(1994) was shown to lead to at most double exponential growth of ∇θ , instability
of the collapsing θ ridge may again eventually dominate the stabilizing effect of
background shear. That instability of the ridge was not previously observed appears
to be due to the fact that the stabilizing effect of background shear is in this case
particularly strong; instability does not become manifest until the ridge reaches widths
that are well below the grid resolution of the earlier numerical investigations. The
instability is illustrated here, again within the limits of current computational resources,
in § 3.4.

2. Properties of the filament instability

Before presenting some numerical examples, we first review the basic scaling for
growth rates and outline the sense in which repeated instability may lead to finite-time
singularity. The scenario, consisting of a discrete sequence of instabilities, is slightly
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FIGURE 1. Snapshot of the strip boundary at (a) t = 46 and (b) t = 46.8 and magnification
of central region. Initial boundary is at y = ±π/6 + 0.01 sin x; θ = 1 inside the strip, θ = 0
outside.

different from that described in Hoyer & Sadourny (1982), which focused on the
continuous range of scales present in a fully developed turbulent flow.

For definiteness we consider an initially straight filament, f0, with a cross-filament
profile θ = f (y). On dimensional grounds, the growth rate of lateral perturbations
η(x) to the filament scales as θ0/d0, where θ0 and d0 are typical temperature and
cross-filament length scales, respectively. The actual growth rate depends on the profile
f (y) but not sensitively (Juckes 1995; see also § 3.2 below). As perturbations grow,
they saturate when η ∼ d, at which point the original filament begins to roll up into
elliptical patches connected by a new filament, f1, similar to the filament instability
of two-dimensional vortex dynamics (see figure 1a). The patches induce a background
strain that has two effects: (i) it stretches the new filament f1 causing the filament
width to shrink exponentially (or possibly super-exponentially, as discussed below);
and (ii) it provides a stabilizing effect on the new filament, similar to the two-
dimensional case studied by Dritschel et al. (1991). The shrinking of the new filament
f1 implies that it will become unstable when the width, d1 say, is such that the growth
rate θ0/d1 sufficiently exceeds the background shear θ0/d0, which will occur on a time
scale proportional to σ−1

0 ∼ d0/θ0. The secondary filament f1 will therefore in turn roll
up into a secondary instability, producing a tertiary filament f2, etc.

Because of the inversion (1.2), interactions in this model are more local than for
the case of two-dimensional vortex dynamics. As a result, to a good approximation
the evolution of a given filament will be controlled purely by the influence of the
parent filament that spawned it. At each stage, therefore, the new filament will become
unstable when it shrinks to a certain fraction of the width of the parent filament; that
is, we expect the ratio di/di−1 = ε, where di is the width of the ith filament and where
ε � 1, to remain independent of i. This being the case, the time taken for the ith
filament to generate the (i + 1)th filament is σ−1

i ∼ di/θ0 ∼ εid0/θ0. The total time
taken to generate the (n + 1)th filament is

∑n
i=0ε

id0/θ0→ (1− ε)−1 d0/θ0 as n→∞.
Hence a filament of zero width, and consequently infinite ∇θ , is produced in a finite
time.
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Although the time scale for the instability of a given filament is governed by the
growth rate σi, the actual time taken to generate a new filament by roll-up will depend
also on (i) the size of any initial perturbation and (ii) how it projects onto the scale
of the fastest-growing unstable mode. Perturbations will exist in general because of the
curvature of each filament near the elliptical patches of its parent. Let η0 denote the
size of the perturbation to the ith filament, relative to the width di, and, by locality,
assume that it is independent of i. The evolution of η0 may be divided into two phases:
a primary phase of exponential growth of η0 to order-one amplitude, followed by a
secondary phase of exponential thinning of the new filament to the critical width for
instability di+1 = εdi. The total time taken is ∼ −σ−1

i log η0 − σ−1
i log ε. This factor

may be large if η0 is small or if ε is small, but if independent of i will only contribute
a constant prefactor for the total time to generate the nth filament. Some caveats
regarding the onset of the instability and the preservation of self-similarity will be
discussed further in conjunction with the numerical illustrations and in § 4 below.

3. Numerical illustrations
We illustrate the possibility of self-similar instabilities in four simple contexts: the

first three, filaments with different initial cross-sectional θ profiles; the last, the closing
saddle flow mentioned in the introduction and examined extensively in previous
studies. All cases suggest the possibility of a cascade of instabilities, although it
must be stressed that current numerical resolution is insufficient to yield a definitive
demonstration of a self-similar singularity. Because the ratio ε tends to be extremely
small, we are unable to follow the evolution beyond the second or third instability.
Further, self-similarity in the cross-sectional θ profiles is definitely not preserved in the
distributed filament profiles considered in §§ 3.2 and 3.3.

3.1. Strip
The simplest profile comprises a strip of uniform θ :

θ0(y)=
{

1 |y|6 d,
0 otherwise,

(3.1)

which has the advantage that the form of the profile is trivially maintained at all stages
of the evolution. Because the initial profile is discontinuous, however, the sense in
which finite-time singularity is meant requires modification. In fact, not only is the
initial ∇θ already singular, but there is also a logarithmic singularity in the along-strip
velocity at y = ±d (Juckes 1995). From a Lagrangian perspective the singularity is
removable: it is tangent to the filament boundary and so does not contribute to the
evolution of the boundary, which may be described by a smooth map. One sense in
which singularity formation may thus be considered is as a change in the topology of
the strip due to the shrinking to zero of the distance between opposite sides of the
strip at some point. A similar problem of singularity formation from the interaction
of two interacting patch distributions of θ was considered recently by Cordoba et al.
(2005).

The instability cascade is illustrated in figure 1, which shows snapshots of the
filament boundary for a strip of strength θ = 1, half-width d = π/6, solved in a
2π × 2π doubly periodic domain with a hybrid contour-dynamical method described
in the Appendix. The initial strip is perturbed by displacing the contours by a
distance η0 = 0.01 sin x. At t = 46 the secondary filament generated by the initial
instability begins to roll up into a secondary instability. Very soon afterward, the
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FIGURE 2. Inverse minimum cross-filament distance against time on a log–linear scale (a)
and loglog–linear scale (b).

secondary instability itself can be seen to generate tertiary filaments which in turn
become unstable. The collapse in spatial and temporal scales at each stage is evident:
the second instability develops over a time interval 1t ∼ O(1); the third instability
develops over an interval 1t ∼ O(0.1) (inset). At this point the numerical scheme is no
longer able to accurately follow the evolution.

The increase of the inverse minimum cross-filament distance in time is shown in
figure 2. A period of initially super-exponential growth, up to around t = 43, in line
with that found by Ohkitani & Yamada (1997) and Constantin et al. (1998) for the
closing saddle, and suggesting that this growth may be typical for this system, appears
to saturate before the onset of the secondary instability. The secondary instability at
t = 46 shows a much more rapid increase in growth, although the short time range
available here makes a definite fit difficult.

Another indication of the possibility of finite-time singularity is given by the energy
dissipation. In the viscous system (with a viscous term ν1θ on the right-hand side
of (1.2)), a condition for finite-time singularity is that the instantaneous maximum, or
peak, energy dissipation, εT → C > 0 as the viscosity ν→ 0. The present numerical
scheme dissipates only through discretization errors of the finite grid, but we may
consider the dependence of the dissipation on the grid resolution, shown in figure 3 for
inversion grid resolutions N = 512, 1024, 2048, 4096 (θ is accurately represented on a
grid four times finer), with increasing grid resolution corresponding to decreasing ν.
The peak dissipation εT occurs around the onset of the secondary and tertiary
instabilities and is remarkably uniform across the four cases.

3.2. Smoothed strip
To avoid the singularity associated with the discontinuous initial θ profile, we consider
next a smooth profile by convolving the strip with a Gaussian kernel. Following Juckes
(1995), we define

θ̃0(y)= 1√
2πδ

∫
θ0(y

′)e(y−y′)2 /2δ dy′ (3.2)

with θ0(y) given by (3.1) and where δ is a parameter controlling the transition from
θ = 0 outside to θ = 1 inside the strip. Juckes (1995) demonstrated that for values of
δ . 0.4 the growth rate of the linear instability and wavenumber of the maximum
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FIGURE 3. Evolution of the energy dissipation ε(t), calculated directly from the total energy,
for inversion grid resolution N = 512, 1024, 2048, 4096 (peaks moving left to right).
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FIGURE 4. θ field at time t = 40 for the strip smoothed according to (3.2) with δ = 0.1; full
field (a) and 8× magnification of the central region (b).

growing mode remain close to those of the strip (see Juckes (1995), figure 1).
In the numerical method used here, the smooth profile is represented by contours
of constant θ at increments 1θ = 0.01. The instability is again initiated by a y-
displacement of each contour by an amount 0.01 sin x.

Figure 4 shows a snapshot of the θ field at t = 40, including an 8× magnification
of the central region. The secondary instability is again apparent in the enlargement,
although its scale is markedly smaller than in the case of the strip, both in the
along-filament wavelength and the cross-filament extent. The filament has here been
stretched to a smaller width before the onset of the secondary instability.
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FIGURE 5. Cross-sections of the θ profile along a line through the origin and normal to the
filament centre, at times t = 0, 5, 10, . . . , 35 and t = 39 (outer lines to inner).

The reduction in scale is associated with the time evolution of the filament cross-
section. Figure 5 shows cross-sections of the filament along a line through the origin
and normal to the filament maximum at times from t = 0 to t = 39, just before
the onset of the secondary instability. It is clear that the filament does not preserve
its initial profile during the evolution of the primary instability and the formation
of the secondary filament. A large skirt of low θ values is left at relatively large
distances from the filament centre while the θ values near the centre exhibit more
rapid compression, leading to a sharply peaked ridge. The secondary instability shown
in figure 4 involves primarily these large θ values near the filament centre while the
skirt initially remains laminar. The relative magnitude of the θ values involved in the
secondary instability relative to the background skirt is therefore less than for the
primary instability. It is not clear whether this decrease in effective filament strength
will be offset at all stages of instability by the shrinking filament width, such that
the filament instability remains sufficiently vigorous to overcome the stabilizing effect
of the ambient shear. Hints of tertiary instability may be seen in places, but at these
scales numerical resolution is clearly inadequate.

3.3. Elliptical cross-section
We consider next a case in some regards intermediate between the strip and smoothed
strip profiles discussed above. We define the initial cross-section by the function

θ(y)= (1− y2/d2)
1/2
, (3.3)

belonging to a class of elliptical θ distributions discussed in Dritschel (2011). The
profile is continuous and, although there is a weak singularity in ∇θ at y = ±d, the
velocity field is everywhere regular. For a horizontally elliptical patch (as opposed to
a filament), Dritschel (2011) showed that the elliptical cross-section gives an exact
uniformly precessing solution to (1.2), stable for horizontal aspect ratios & 0.427.
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(a) (b)

FIGURE 6. The θ field at t = 42 (a) and t = 43 (b) from the initial profile (3.3).

The evolution of the filament during the initial instability is similar to that of
the smooth strip discussed above: in particular, the filament cross-section develops
a strongly peaked structure similar to that shown in figure 5. Thus, the secondary
instability again involves initially only θ values from near the centre of the strip. The
arguments of § 2 may still, however, be applied, by considering the distance between
the two outermost contours C ±0 defining the profile (initially at y = ±d). Suppose
that the secondary, tertiary, etc., instabilities in the filament core do not lead to a
finite-time singularity, but rather serve simply to partially homogenize θ between C ±0 .
Rapid shrinking of the distance between C ±0 will still lead to a situation in which
the filament bounded by those contours becomes sufficiently unstable to overcome the
effect of ambient shear. The arguments of § 2 again suggest a series of instabilities of
the entire filament as defined by C ±0 , leading to a collapse in the minimum separation
between the two contours. In this case, the fact that there exists a material line lying
between C ±0 on which θ = 1 implies that a jump discontinuity in θ would develop in
finite time from the initially continuous profile.

Figure 6 shows two snapshots of the θ field arising from this initial condition,
illustrating the above scenario. Although the secondary instability of the filament
core began around t = 36, we ignore it and the possibility of singularity formation
in the filament core. Continuing the time integration (increased numerical dissipation
was necessary to regularize the complex θ field emerging in the core), we find that
between t = 42 and t = 43 the filament as defined by C ±0 becomes unstable. The
secondary instability of C ±0 leads to further rapid collapse of the distance between
these contours and evidence of tertiary instability is again visible.

3.4. The closing saddle
Finally, we revisit briefly the initial condition considered originally by Constantin et al.
(1994). In more recent studies of this flow (Ohkitani & Yamada 1997; Constantin
et al. 1998), it was concluded that the maximum |∇θ | grows like exp exp t, with
possible decrease in the growth at later times. This has been confirmed by the present
calculations up until time t = 8.9. Here, we conclude that until this time the large-scale
shear flow due to the large-scale θ distribution is sufficient to stabilize any filament
instability. At t = 8.9, however, the filament has shrunk to an extent that the instability
is no longer suppressed and it again rolls up, generating narrower filaments on a
shorter time scale (figure 7). That this instability was not apparent in earlier studies is
most likely due to limited resolution; with a pseudo-spectral model at 40962 resolution
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FIGURE 7. The θ field from the initial condition θ = cos y− sin x sin y at t = 8.9 (a) and a
16× magnification of the origin at t = 9.1 (b).

it is possible to follow the inviscid evolution only until just beyond t = 8. In the
present case, the contoured θ field is retained on a fine-grid of 32 7862 and dissipation
occurs at scales strictly below this grid scale.

4. Discussion
The possibility of finite-time singularity formation in the quasigeostrophic model,

via a self-similar cascade of scales, was suggested previously by Hoyer & Sadourny
(1982) and Pierrehumbert et al. (1994). In this paper, we have provided some limited
numerical support for this scenario using high-resolution, hybrid contour dynamical
numerical simulations starting from a variety of initial conditions. In all cases the
tendency for filaments to roll up in such a way as to produce new, narrower filaments
that also roll up, on a shorter time scale, is evident and robust. A finite-time singularity
appears plausible, though subject to the following important caveats.

(a) Numerical resolution, though relatively high, is insufficient to follow the
cascade beyond the second or third instability. By the third instability accurate
computation of quantities such as ∇θ is no longer possible.

(b) In the cases of distributed θ profiles, the filament cross-section does not retain
its initial profile and so self-similarity of the instabilities is not preserved. This
may have only a modifying effect on the cascade in the case of the elliptical
cross-section (§ 3.3). In other cases it may eventually weaken the difference in θ
values between the filament core and its most immediate surroundings such that
subsequent instabilities are suppressed.

(c) As described in § 2, any arbitrary small perturbation to the filament, such as
arising from curvature in the mean flow, is sufficient to realize the cascade. This
argument may fail, however, if in regions where the filament is thinning fastest
it is also straightening to such an extent that perturbations are in effect excluded
from the most unstable region. Figure 3 indicates that at lower resolutions the
secondary instability is triggered earlier, suggesting the possible role of numerical
errors, although the time of onset does appear to converge with increasing
resolution. A similar series of experiments for the case of the closing saddle also
indicates a slight delay in the onset of the instability with increasing resolution.
Whether the onset of the instability indeed converges to a finite time at ever higher
resolution will need to await more powerful numerical calculations.
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In summary, the rapid increase of growth rate associated with the collapsing
filament makes a cascade of instabilities a plausible scenario, and the current work
is illustrative of how this might lead to finite-time singularity. It is hoped that future
work making use of more sophisticated, adaptive grid numerical schemes will address
the above caveats in more detail and provide further support for the presence or
absence of such a singularity.

Appendix
The numerical algorithm used to integrate (1.2) is an adaptation of the contour

advective, semi-Lagrangian algorithm developed by Dritschel & Ambaum (1997). The
efficiency of this method in representing two-dimensional freely decaying turbulence
was recently demonstrated by Dritschel & Scott (2009). The only modification
required here is to the Green’s function relating the active scale to the streamfunction.
The more local nature of the Green’s function in the present case means that a fine
underlying grid is required to accurately represent the velocity field, which retains
significant power at small scales (see also Dritschel 2011).

For the experiment described in § 3.1 a single contour defines each edge of the strip.
At each time step the θ field is gridded onto a 16 3842 grid before averaging onto
a 40962 grid and inverting to give ψ . Each contour is represented by a sequence of
nodes, whose density increases with increasing curvature to accurately represent each
contour (Dritschel 1989). Contour surgery, used to control the growth in nodes, is
effective on scales below that of the finest grid.

For the experiments involving distributed profiles (§§ 3.2–3.4), the smooth θ field
is represented by contours at intervals of 1θ = 0.01. A few experiments carried out
with 1θ = 0.005 showed no significant differences from those reported here. In §§ 3.2
and 3.3, the fine grid resolution is again 16 3842; for the closing saddle experiment
described in § 3.4, it is 32 7682.
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