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Passive and active scalar mixing is examined in a simple one-parameter family of two-dimensional
flows based on quasi-geostrophic dynamics, in which the active scalar, the quasi-geostrophic
potential vorticity, is confined to a single horizontal surface �so-called surface quasi-geostrophic
dynamics� and in which a passive scalar field is also advected by the �horizontal, two-dimensional�
velocity field at a finite distance from the surface. At large distances from the surface the flow is
determined by the largest horizontal scales, the flow is spectrally nonlocal, and a chaotic
advection-type regime dominates. At small distances, z, scaling arguments suggest a transition
wavenumber kc�1/2z, where the slope of the passive scalar spectrum changes from k−5/3,
determined by local dynamics, to k−1, determined by nonlocal dynamics, analogous to the transition
to a k−1 slope in the Batchelor regime in three-dimensional turbulence. Direct numerical simulations
reproduce the qualitative aspects of this transition. Other characteristics of the simulated scalar
fields, such as the relative dominance of coherent or filamentary structures, are also shown to depend
strongly on the degree of locality. © 2006 American Institute of Physics. �DOI: 10.1063/1.2375020�

I. INTRODUCTION

The large-scale, low-frequency motion of a rotating,
stratified fluid is described to a good approximation by the
quasi-geostrophic system, in which the dominant hydrostatic
and geostrophic balances constrain particle trajectories to
quasi-horizontal surfaces.1 The system is completely de-
scribed in terms of a single, materially advected quantity, the
quasi-geostrophic potential vorticity q�x ,y ,z , t�, which is in
turn related to the layerwise two-dimensional �2D� advecting
flow through an inversion relation, �=L�q�, where L is some
operator and ��x ,y ,z , t� is the quasi-geostrophic streamfunc-
tion. In the simplest form, and scaling z according to the ratio
of Coriolis and buoyancy frequencies, the equations take the
form

qt + J��,q� = 0, �1�

�3� = q , �2�

where �3=�xx+�yy +�zz is the three-dimensional Laplacian
operator and J�f ,g�=�xf�yg−�xg�yf is the two-dimensional
Jacobian operator. In the case where the flow is semibounded
in the vertical z, e.g., by a horizontal ground, an additional
boundary condition is required, which typically takes the
form of material advection of surface potential temperature,
��x ,y , t�,

�t + J��,�� = 0, �3�

�z = � , �4�

on the surface z=0.
Surface quasi-geostrophic �SQG� dynamics describes the

particular situation when interior gradients of potential vor-
ticity vanish and the flow is assumed to decay away from the
single horizontal bounding surface, i.e., q�0 and �→0 as
z→�. In that case, the motion is determined entirely by the

distribution of potential temperature on the single horizontal
bounding surface. The system is then two-dimensional
and the inversion relation between � and � can be written as
−�−��1/2�=�, where � is the two-dimensional Laplacian.2

The operator �−��1/2 is defined most easily in spectral space,

�̂�k� = − �k�−1�̂�k� , �5�

which follows from �4� and �2� with q�0. Here �̂�k� is the
Fourier transform of ��x ,y , t� and k= �kx ,ky� is a two-
dimensional horizontal wavenumber. Equation �5� can be
compared with the case of the two-dimensional Euler equa-

tions �2DE�, for which �̂�k�=−�k�−2�̂�k�, where ��x ,y , t�
is the vorticity, or the case of the full quasi-geostrophic equa-
tions �3DQG� with isothermal boundary conditions ����z=0

=0�, for which �̂���=−���−2q̂���, where �= �kx ,ky ,kz�. In
each case, the inversion results in a greater smoothing of the
vorticity field than in SQG, which means that the flow at a
given scale is controlled to a greater extent by larger scale
structures. In this sense the dynamics of 2DE and 3DQG are
nonlocal, whereas the dynamics of SQG is local.3 Other ba-
sic properties of the SQG system, and how they differ from
2DE, have also been discussed in the literature.2,4,5 Juckes6

showed that the SQG system is equivalent to the quasi-
geostrophic dynamics of the extratropical tropopause, which
can be considered as a surface separating two regions of
uniform potential vorticity across which the static stability is
discontinuous.

Although the SQG system describes the evolution of a
two-dimensional field it is derived in the context of a three-
dimensional system in which the full streamfunction takes
the form

�̂�k;z� = − �k�−1�̂�k�e−�k�z. �6�

Thus, structures in the flow decay away from the surface at a
rate proportional their wavenumber. This gives rise to two
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distinct regimes at a given distance, z0: for k= �k � �1/z0, the
dynamics are essentially unchanged from SQG in that � sat-

isfies �5�, whereas for k�1/z0, �̂�k� is essentially zero. For
large separations the dynamics is controlled entirely by the
lowest wavenumbers.

In the present paper we examine the mixing of a passive
scalar on surfaces for which z	0. The special case of tracer
mixing during vortex merger was considered recently by
Wirth,7 using a scalar field that was exactly correlated in z at
t=0 �see discussion below�. Here, on the other hand, we
consider statistical properties of scalar mixing. For a given
z=z0, we again expect two distinct regimes: a local regime
for k�1/z0, where scalar mixing at a given scale is domi-
nated by the flow at that scale; and a nonlocal regime for
k�1/z0, where scalar mixing is dominated by the flow at
scales larger than z0. For large z, the flow will have very little
energy at small scales and a chaotic advection-type paradigm
might be expected to hold, where all mixing is controlled by
a spatially smooth, large-scale, and quasi-stationary flow.

This paper examines the transition between these two
regimes and proposes this model as a useful framework in
which to consider mixing in simply controlled local and non-
local flows. In Sec. II, we review the relevant two-
dimensional turbulence phenomenology and obtain predic-
tions for scalar spectral shapes at general z	0, the distance
from the dynamical surface. In Sec. III, we present the re-
sults of direct numerical simulations �DNS� of the SQG sys-
tem with passive scalar advection on z	0 and examine in
more detail the structure of the tracer field. In Sec. IV, we
discuss implications for scalar mixing in various settings.

II. PHENOMENOLOGY

As for 2DE, the unforced SQG system possesses two
invariants,3

E =
1

A
�

A

��dxdy and Z =
1

A
�

A

�2dxdy , �7�

with associated spectra E�k� and Z�k� defined by

E = �
0

�

E�k�dk and Z = �
0

�

Z�k�dk . �8�

By analogy with 2DE, we may refer to E and Z as the energy
and enstrophy, respectively. However, in SQG the quantity Z
represents the surface potential energy and is equivalent to
the velocity variance, or surface kinetic energy defined by
U=1/A	A�u�2dxdy, where u= �−�y ,�x� is the surface veloc-
ity. The quantity E represents the total, z-integrated, energy
of the three-dimensional system, as originally noted by
Blumen.8 Hereafter, we refer to E as the total energy and
Z�U simply as the surface energy.

As is well known, the two invariants imply a dual cas-
cade, in which surface energy is transferred to small scales
�direct cascade� and total energy is transferred to large scales
�inverse cascade�. At equilibrium, the requirement that the
surface energy flux 
 to small scales be constant implies that

the surface energy spectrum has the form3,8 Z�k��U�k�
�
2/3k−5/3, where U�k� is the spectrum of U defined analo-
gously to �8�.

We consider next the properties of a passive scalar
forced at large scales, and advected by the SQG flow accord-
ing to

pt + J��,p� = 0. �9�

Although all the dynamics take place on the surface, �9� is
defined for z	0 through �6� and we consequently examine
scalar statistics for general z	0. In general, the passive sca-
lar spectrum P�k� will satisfy

��k� � kP�k�/��k� �10�

by dimensional arguments, where � is the flux of scalar to
small scales and ��k� is a typical eddy turnover time at wave-
number k. On the surface itself, the dynamics are spectrally
local so ��k� can be written in terms of the surface energy, or
velocity variance, at wavenumber k,

��k� � �k3U�k��−1/2 � 
−1/3k−2/3. �11�

The usual phenomenology9,10 can then be applied under the
assumption that the scalar flux ��k� is constant at equilib-
rium. While the appearance of coherent structures in two-
dimensional turbulence undermines the validity of this as-
sumption, in practice, and as will be seen in the numerical
results presented below, the constancy of the mean ��k� is
well satisfied here. Equations �10� and �11� then imply the
scalar spectrum has the form

P�k� � �
−1/3k−5/3. �12�

For z
0, on the other hand, the dynamics cease to be
local below a length scale defined by z, and the advective
time scale at a given scale can no longer be written in terms
of the energy at that scale. Instead, following the same pro-
cedure as for the weakly nonlocal case of the enstrophy cas-
cade in two-dimensional flow,11 we estimate the advective
time scale at a given z, denoted by ��k ;z�, in terms of the
energy contained in all wavenumbers smaller than k,

��k;z� = 
�k

k�2U�k�;z�dk��−1/2

, �13�

where U�k ;z� is the spectrum of velocity variance at z. Using
�6� it follows that

U�k;z� = Z�k�e−2kz, �14�

which makes explicit the exponential cutoff of kinetic energy
at horizontal scales smaller than z. The asymptotic behavior
of ��k ;z� is

��k;z� � �
−1/3k−2/3 for k � k0,


−1/3k0
−2/3 for k � k0,


 �15�

for fixed k0=1/2z. For k�k0 the resulting P�k� is as �12� for
the surface case. For k�k0, however, P�k� is determined by
the flow at the scale k0, resulting in a Bachelor-type regime12

with
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P�k;z� � �
−1/3k0
−2/3k−1. �16�

Figure 1 shows the kinetic-energy spectrum, U�k ;z�, as
given by �14�, and the passive scalar spectrum P�k ;z� based
on �13�, for z=0,1 /64,1 /16,1 /4 ,1, with an energy injection
scale at kf =1. The special case z=0 corresponds to flow and
scalar advection on the surface, in which case P�k� follows
the pure k−5/3 spectrum given by �12�. As z increases, the
energy at high wavenumbers is more and more strongly at-
tenuated, until at z=1 only the lowest wavenumbers contain
significant energy. The corresponding P�k� approaches a k−1

spectrum at all wavenumbers. For intermediate z, P�k�
�k−5/3 for wavenumbers k�k0=1/2z, and transitions to a
k−1 spectrum for k
k0.

III. DIRECT NUMERICAL SIMULATION

We now test the theoretical spectral shapes with direct
numerical simulations of the forced-dissipative equations

�t + J��,�� = �l�
l� + �h�h� + F���, z = 0, �17a�

pt + J��,p� = �l�
lp + �h�hp + F�p�, z 	 0, �17b�

with �=��x ,y ,z , t� related to ��x ,y , t� through �6�. We con-
sider p defined on discrete levels z=0,1 /64,1 /16,1 /4 ,1.

Both the active scalar and the passive scalar are forced at
large scales. The spectrum of the forcing functions F��,p� is
given by

F̂�k� = ��/�k �k − kf� � �k/2,

0 otherwise,

 �18�

where kf =5, �k=1/�2, and where �=1 is the constant input
rate of surface energy and scalar variance. The time depen-
dence of the forcing is Markovian and for each spectral mode
with k satisfying �k−kf���k /2 is determined by

F̂�k,t + �t� = �1 − r2�1/2ei� + rF̂�k,t� , �19�

where � is a random phase, and where r is defined through
the decorrelation time cr=�t / �1−r�=0.1. At each time step
�19� is normalized so that the injection rate of surface energy
and scalar variance is constant and equal to �=1. The forc-
ing of each field is independent so the passive scalar evolu-
tion on each z is uncorrelated, and uncorrelated from the
active scalar.

Energy is removed at large scales by the hypodiffusion
term �l�

−l in �17�, with l=−2 and �l=0.01, i.e., a damping
time scale of �l=100 at the largest �k=1� spatial scales.
These values have been chosen to allow equilibration of the
larger scale fields, while having minimal influence on the
inertial range k
kf. At small scales, a high-order hyperdif-
fusion with h=4 is used ensure numerical stability while
allowing a large inertial range at modest resolution. The dif-
fusion coefficients are determined by the rms velocity field
on each level, which defines a straining time scale at the
smallest spatial scales, �h=urmskmax, where kmax is the maxi-

mum resolved wavenumber.13 This ensures comparable dif-
fusion rates for both � and p across the different levels.
Specifically, we have �hkmax

2h =2,1.85,1.57,0.96,0.20 on
z=0,1 /64,1 /16,1 /4 ,1, estimated from preliminary simula-
tions. Again, these values of h and �h ensure that dissipation
is essentially zero in the inertial range under consideration.

From �11�, the time scale of the flow tends to zero at
large k, which means a short time step is required for nu-
merical stability. On the other hand, for z
0 the flow is
weak and a long integration time is required to reach equi-
librium. Since lower wavenumbers decay more slowly in z
and so contribute the most energy to the flow at z
0, the
situation is ameliorated if large-scale structures can develop
freely in the inverse cascade. For this reason, a second set of
simulations was performed without hypodiffusion or other
large-scale dissipation. In this case, equilibrium is never
completely reached but the effect on the high wavenumber
spectral shapes over the time periods considered was small.

We use a fully dealiased pseudospectral method to solve
�17� on a doubly periodic horizontal domain �x ,y�
� �−� ,��� �−� ,��, with � and p defined on the surfaces
z	0 defined above, starting from zero initial conditions. The

FIG. 1. Theoretical kinetic energy and passive scalar spectrum on and away
from the surface, for z=0,1 /64,1 /16,1 /4 ,1: �a� U�k ;z� as given by �14�,
with z increasing downward from the surface k−5/3 slope. �b� P�k ;z� as given
by �10� and �13� with a low wavenumber cutoff at kf =1 and z increasing
upward.
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time stepping is a fourth-order Runga-Kutta scheme, with the
forcing and diffusion terms treated implicitly. We increase
the resolution incrementally from 256�256 grid points to
2048�2048. The spectral shapes at high wavenumbers are
allowed to equilibriate at each resolution. At the highest
resolution, the equations are integrated for approximately 40
turnaround times of the largest-scale �and slowest� eddies.

Figure 2 shows a simultaneous snapshot of the surface
potential temperature � and passive scalar fields p at
z=0,1 /64,1 /16,1 /4 ,1. Before discussing the spectral be-
havior, we make a few qualitative observations based on the
two-dimensional scalar fields. A number of features are
worth noting.

�i� In the � field, the presence of long-lived coherent
structures is clear. Although their presence impairs the
convergence of higher-order statistics, reasonable
convergence of spectra in the surface energy cascad-
ing regime was nevertheless achieved in all the simu-
lations considered �with or without large-scale
dissipation�.

�ii� The active and passive scalar fields on the surface
z=0 share a broadly similar structure, although p ap-
pears more filamentary than �. The greater filamen-
tary structure of p is verified by the power spectra and
two-point probability density functions described be-
low. The differences in structure are consistent with
higher-resolution simulations performed recently by
Celani et al.,14 who found rougher p in simulations
with forcing that was delta correlated in time.

�iii� In the passive scalar field, there is a systematic in-
crease in the proportion of filamentary to coherent
structures with increasing z. For the lower two cases,
z=1/4 and z=1, the scalar field is dominated by fila-
mentary structures. For z=1 the scalar structure re-
sembles that of chaotic advection flows, arising from
repeated stretching and folding by the large-scale
flow.

�iv� The passive scalar field on z=0 exhibits intense co-
herent structures at all scales, as for the active field.
On z
0, on the other hand, p only exhibits coherent
structures at scales larger than a given scale, which
varies directly with z. In other words, there is a sys-
tematic elimination of coherent structures at progres-
sively larger scales as z increases, due to the exponen-
tial cutoff of energy at wavenumbers beyond k0=1/z.
Coherent scalar structures result from the trapping of
scalar values in coherent flow structures, which decay
exponentially in z at a rate proportional to their
wavenumber.

�v� Mixing efficiency of p, as defined by the generation
of small-scale filamentary structures, increases with z;
in particular, at small z, coherent structures inhibit
mixing by trapping of extreme scalar concentrations.
However, because the energy of the flow decreases
with z, the actual mixing rate is not necessarily mono-
tonic in z. This is illustrated in Fig. 3. The rms veloc-
ity urms �open circles� decreases sharply with z be-
cause of the attenuation of the small-scale flow. The

FIG. 2. �Color online� Simultaneous snapshot of surface � �top left� and
passive scalar p on z=0, z=1/64, z=1/16, z=1/4, and z=1 �left to right,
top to bottom�. The color scale in each panel has been normalized according
to the rms value of each field: darkest and lightest represent extreme positive
and negative values. One-sixteenth of the computational domain is shown
with −� /4�x ,y�� /4; the forcing scale is kf

−1=1/5.

FIG. 3. Rms velocity, urms, passive scalar prms, and scalar dissipation �D

�scaled to fit axes� as a function of z. Note that �rms=urms�z=0�. The solitary
diamond denotes the dissipation for the active scalar on z=0. Arbitrary
units.
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scalar dissipation is also shown �diamonds�, which
shows that the mixing rate is approximately uniform
in z: at large z, the more filamentary scalar field is
compensated by the less energetic flow. �Note that the
scalar dissipation on z=1 is not fully equilibriated but
is still growing in time.� Finally, the approximately
uniform mixing rates are reflected in the rms scalar
value prms, which can again be interpreted as a crude
measure of mixing rate �since scalar input is
constant�.

Because the flow is very weak on z=1 a longer time is
needed to reach stationarity than for smaller z. The scalar
dissipation reaches a constant value in all other cases, but is
still increasing on z=1 by the end of the simulation �not
shown�. The spectral flux, plotted in Fig. 4, shows that an
equilibrium between scalar flux and dissipation is not
achieved on z=1. For smaller z, equilibrium is generally
reached over a large inertial range, although in some cases
there is a deficit of scalar transfer at low wavenumbers. Un-
like in 2DE, the eddy turnaround time in the present case
varies indirectly with wavenumber, resulting in a more rapid
equilibration at small scales than at large scales. Hence, al-
though the scalar dissipation equilibriates quickly, it takes
longer for a stationary inertial range to develop at large
scales. In Fig. 4 and hereafter all quantities are averaged in
time over the last half of the simulation, long after scalar
dissipation has equilibriated for all cases z�1.

Figure 5 shows the computed kinetic energy and scalar
spectra for the same values of z. The surface kinetic-energy
spectrum U�k ;0� �equivalently, the active scalar variance
Z�k�� has a slope of around −1.7 broadly consistent with the
predicted spectrum. This computed slope is consistent with
that found in the recent high-resolution simulations reported
by Celani et al.14 �1.80±0.1�. Both slopes are closer to the
predicted spectrum than earlier studies either at lower
resolution3 or using ordinary diffusion,15 supporting Schorg-

hofer’s conclusion15 that increasing Reynolds number leads
to flatter spectral slopes in the SQG direct cascade. On sur-
faces for which z
0, the kinetic-energy spectrum U�k ;z� is
modified according to �14� and each curve is simply reduced
by a factor e−2kz. This strongly attenuates the kinetic energy
at large k. The effect of the attenuation is also visible in the
reduction in the spectral peak at k=2.

The passive scalar spectrum on z=0 is flatter than pre-
dicted, with a slope of −1.4±0.06, consistent with the
rougher scalar field seen in Fig. 2. As in Celani et al.,14 we
therefore find a difference in the behavior of the active and
passive scalar fields on z=0 already in the low-order statis-
tics, and a departure from the theoretical prediction �12�.
Note also that the passive scalar spectrum is shallower than

FIG. 4. Spectral flux of surface energy and passive scalar variance ��k�
divided by �D. Lines are shifted for clarity; labels on right-hand axes are
located at unity each field.

FIG. 5. Kinetic energy and passive scalar spectrum from DNS on and away
from the surface, for z=0,1 /64,1 /16,1 /4 ,1: �a� U�k ;z� with z increasing
downward. �b� P�k ;z� with z increasing upward. Bold lines denote values on
z=0. In �b� consecutive lines are shifted half a decade vertically for clarity.
Note that in �a�, Z�k��U�k ;0�.
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would be expected using �11� with the computed spectral
slope of −1.7 for U�k�.

For z
0, there is a further flattening of the passive sca-
lar spectra, qualitatively similar to that described in Sec. II.
First, for z=1/64, the spectrum flattens to a slope slightly
greater than −1 at wavenumbers higher than about k=30,
while for k�30 the slope is closer to the predicted −5/3.
The structure is roughly consistent with the predicted struc-
ture �cf. Fig. 1�. For z=1/16, the flattening occurs at lower
wavenumbers, near k=10, and it becomes difficult to identify
a local inertial range between here and the forcing wavenum-
ber kf =5. For z=1/4 and z=1, no local range is present and
the spectrum has a roughly −1 slope everywhere, determined
by the energy in the lowest wavenumbers. Again, note that
for z=1 the spectrum takes longer to reach convergence be-
cause the flow is less energetic, and has not yet equilibriated
at small scales. The cleanest −1 slope is obtained at z=1/4
across over a decade of wavenumbers.

The probability density function �pdf� of scalar incre-
ment, �r� and �rp, where �r�= ���x−r�−��r��, provides a
useful way to quantify the change in scalar structure with
increasing z. Figure 6 shows the pdf of scalar increment nor-
malized by the standard deviation �, for values of r from
0.0125 to 0.2. On z=0 the active scalar displays a strong
level of intermittency, but with considerable variation with r:
the tails of �r� are flatter than exponential at small r but
become steeper than exponential, though not quite Gaussian,
at large r. The flatness structure function S4�r� / �S2�r��2 �not
shown� varies from around 4 at large r to over 10 at small r.
For the passive scalar, on the other hand, ��rp�z=0 has clearly
broader than exponential tails over the full range of r, with
S4�r� / �S2�r��2 taking values approximately between 8 �large
r� and 20 �small r�.

As z increases from 0 there is a qualitative change in the
character of the pdfs of the passive scalar. For z=1/64, the
dependence on r is similar to that found for the active scalar.
Again, anomalous scaling �i.e., departure from Gaussian
shape� appears across the full range of r values but is stron-
gest at small r. As z increases further, anomalous scaling
diminishes overall but persists to some extent at small r. For
z=1/4 and z=1 the large r behavior approaches normal scal-
ing with approximately Gaussian tails and S4�r� / �S2�r��2

�3. The broad, irregular tails at small r in the case z=1 are
most likely due to the slowness of convergence of the small
scales, described above, although it appears that anomalous
scaling persists.

IV. DISCUSSION

We have introduced a one-parameter family of flows
based on the surface quasi-geostrophic system, whose effect
on passive scalar mixing ranges from local to nonlocal. In
effect, the system comprises a flow that is filtered at progres-
sively larger scales. Equivalently, the parameter z can be
thought of as controlling the scale below which the flow is
rough. Scaling arguments suggest a passive scalar spectrum
that shallows to k−1 at wavenumbers larger than 1/2z. Pas-
sive scalar spectra obtained from direct numerical simula-
tions are in qualitative agreement with the predicted spectra.

For the special case of z=0 corresponding to the surface
quasi-geostrophic system, the spectral shape of the active
scalar is broadly consistent with theoretical expectations. On
the other hand, the passive scalar is considerably rougher and
has a shallower spectrum than that predicted on the basis of
the energy spectrum. These results are consistent with recent
high-resolution simulations of surface dynamics14 that also
found shallower spectra for the passive scalar than active
scalar. Differences between the scaling properties of the ac-
tive and passive scalar are also apparent from consideration
of the pdfs of scalar increment.

Spectral scaling properties of local and nonlocal dynam-
ics have been previously considered in the context of a
simple one-parameter family of models ranging from spec-
trally nonlocal for �
2 to local for ��2, where � /2 is the
exponent of the Laplacian relating streamfunction and
vorticity.3 The marginal case ��=2� in that family corre-
sponds to the 2D barotropic equations, whose kinetic energy
scales as k−3 in the enstrophy cascading range. SQG corre-
sponds to the case �=1. The family of models described in
the current paper is proposed as an alternative bridge be-
tween local and nonlocal dynamics, where here the scales at
which nonlocal effects become important are controlled di-
rectly through z. The range of passive scalar structure ob-
tained with varying z, dominated by coherent structures on
all scales at one extreme, and by pure filamentary structures
at the other extreme, is immediately obvious in Fig. 2.

Beyond its use as an intermediate model bridging local
and nonlocal dynamics, the present model has direct appli-
cations in various geophysical situations, wherever the dy-
namics evolves according to a surface potential temperature
distribution, either at a solid surface or at an internal inter-
face separating two regions of different static stability. An
example of the latter occurs at the extratropical tropopause.6

The dynamics in this region can be contrasted with that of
the winter stratosphere, where the velocity field is dominated
by coherent, large-scale structures, and where the chaotic
advection paradigm, an extreme example of nonlocal dynam-
ics, is a good approximation.16,17 As a consequence, a good
representation of stratospheric mixing properties of the flow
can be obtained with relatively coarse resolution wind
fields.18 In the troposphere and lower stratosphere, on the
other hand, the kinetic-energy spectrum is shallower and the
dynamics are more local. At the tropopause itself, the jump
in static stability implies a potentially stronger role for sur-
face dynamics.6 Close to the tropopause the structure of
chemical tracer mixing might be expected to contain features
anticipated by the present work. Mixing properties near the
tropopause play an important role in the general circulation
of the whole atmosphere and so the question of whether the
dynamics near the tropopause is dominated by nonlocal or
local behavior is clearly of interest.

Finally, it is interesting to relate the present results to the
recent study by Wirth et al.,7 which also considered aspects
of mixing on horizontal surfaces at z
0 in the SQG frame-
work. Rather than the transition from local to nonlocal mix-
ing, that study focused on the transition from active to pas-
sive scalar mixing, by considering a passive scalar that was
exactly correlated with the active scalar � on the surface
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z=0, and which became progressively decorrelated for in-
creasing z
0. One central result of that study was that mix-
ing �as defined by contour lengths� maximizes for small but
finite z
0. This was interpreted as a consequence of two
compensating factors: the decrease in flow intensity and the
decrease in correlation between passive and active scalar

with increasing z. The present results differ in that the cor-
relation between passive and active scalar is exactly zero for
all z, but similar arguments apply. Figure 2 suggests that the
most efficient mixing is achieved for z=1, when mixing ef-
ficiency is defined as scalar dissipation for a given flow en-
ergy: only on z=1 is there a complete absence of scalar

FIG. 6. Probability distribution function of scalar increment for separations r=0.0125,0.025,0.05,0.1,0.2, normalized by standard deviation. Left to right and
top to bottom: active scalar �r�, passive scalar �rp on z=0,1 /64,1 /16,1 /4 ,1.
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trapping in coherent structures. On the other hand, the energy
of the flow on z=1 is very weak and the time scale required
to achieve a completely mixed state is long. Thus the mixing
rate, as measured by the scalar dissipation, is nonmonotonic
in z, and in fact appears to be nearly independent of z at
small z
0. More accurate quantification of the mixing rate
is currently under investigation.
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